

Frecheirinha

Elaboração dos Estudos de Viabilidade, Estudos Ambientais (EIA-RIMA), Levantamento Cadastral, Plano de Reassentamento e Projeto Executivo da Barragem Frecheirinha no Município de Frecheirinha, no Estado do Ceará

ETAPAC1-PROJETO EXECUTIVO DA BARRAGEM

Volume I - Detalhamento do Projeto Executivo da Barragem

Tomo 3 - Memória de Cálculo

SERVIÇOS DE CONSULTORIA PARA A ELABORAÇÃO DOS ESTUDOS DE VIABILIDADE, ESTUDOS AMBIENTAIS (EIA-RIMA), LEVANTAMENTO CADASTRAL, PLANO DE REASSENTAMENTO E PROJETO EXECUTIVO DA BARRAGEM FRECHEIRINHA NO MUNICÍPIO DE FRECHEIRINHA, NO ESTADO DO CEARÁ.

ETAPA C1 - PROJETO EXECUTIVO DA BARRAGEM

Volume I - Detalhamento do Projeto Executivo da Barragem

TOMO 3 - MEMÓRIA DE CÁLCULO

APRESENTAÇÃO

APRESENTAÇÃO

A empresa TPF Engenharia Ltda e a Secretaria dos Recursos Hídricos do Estado do Ceará (SRH-CE) celebraram o contrato nº 03/SRH 2017, que tem como objetivo a "Contratação de Serviços de Consultoria para a Elaboração dos Estudos de Viabilidade, Estudos Ambientais (EIA-RIMA), Levantamento Cadastral, Plano de Reassentamento e Projeto Executivo da Barragem Frecheirinha no Município de Frecheirinha, no Estado do Ceará, cujo objetivo principal é a criação de um reservatório no rio Caiçara com o intuito de promover o controle dos recursos hídricos da bacia do rio Coreaú, atendendo as demandas de água da região, proporcionando um aproveitamento racional da água acumulada tendo como finalidade principal o abastecimento humano e o dessedentação animal.

As fases para o desenvolvimento do projeto executivo da barragem Frecheirinha são as seguintes:

• FASE A - ESTUDO DE VIABILIDADE

ETAPA A1 - Estudos de Alternativas de Localização da Barragem - Relatório de Identificação de Obra - RIO - e Viabilidade Ambiental (EVA)
✓ Volume I - Relatório de Identificação de Obras - RIO e Estudos de Viabilidade Ambiental - EVA
☐ Tomo 1 - Estudo de Alternativas de Localização da Barragem
☐ Tomo 2 - Desenhos
☐ Tomo 1B - Anexos
☐ Tomo 2 - Estudos de Viabilidade Ambiental
ETAPA A2 - Estudos Básicos e Anteprojeto da Barragem
✓ Volume I - Estudos Básicos
□ Tomo 1 - Relatório Geral
□ Tomo 2 - Cartografia (Textos)
☐ Tomo 2A - Cartografia (Desenhos)

□ Tomo 2B - Cartografia Memória de Cálculo - (Croquis e Fotos)
☐ Tomo 2C - Estudos Topográficos
☐ Tomo 3 - Hidrologia (Textos)
☐ Tomo 4 - Geologia e Geotecnia (Textos)
☐ Tomo 4 A - Geologia e Geotecnia (Anexos) – Partes I, II, III e IV
✓ Volume II - Anteprojeto da Barragem
☐ Tomo 1 - Relatório de Concepção do Anteprojeto
☐ Tomo 2 - Desenhos
☐ Tomo 1B - Memória de Cálculo
 ETAPA A3 - Relatório Final de Viabilidade Técnico, Econômico e Financeiro - RFV
✓ Volume I - Relatório Final de Viabilidade Técnico, Econômico e Financeiro da Barragem
FASE B - ESTUDOS AMBIENTAIS, LEVANTAMENTOS CADASTRAIS E
FASE B - ESTUDOS AMBIENTAIS, LEVANTAMENTOS CADASTRAIS E PLANO DE REASSENTAMENTO
PLANO DE REASSENTAMENTO
PLANO DE REASSENTAMENTO - ETAPA B1 - Estudos dos Impactos no Meio Ambiente (EIA-RIMA)
PLANO DE REASSENTAMENTO - ETAPA B1 - Estudos dos Impactos no Meio Ambiente (EIA-RIMA) ✓ Volume I - Relatório EIA/RIMA
PLANO DE REASSENTAMENTO - ETAPA B1 - Estudos dos Impactos no Meio Ambiente (EIA-RIMA) ✓ Volume I - Relatório EIA/RIMA □ Tomo 1 - Estudos dos Impactos Ambientais (EIA)
PLANO DE REASSENTAMENTO - ETAPA B1 - Estudos dos Impactos no Meio Ambiente (EIA-RIMA) ✓ Volume I - Relatório EIA/RIMA □ Tomo 1 - Estudos dos Impactos Ambientais (EIA) □ Tomo 2 - Relatório dos Impactos no Meio Ambiente
PLANO DE REASSENTAMENTO - ETAPA B1 - Estudos dos Impactos no Meio Ambiente (EIA-RIMA) ✓ Volume I - Relatório EIA/RIMA □ Tomo 1 - Estudos dos Impactos Ambientais (EIA) □ Tomo 2 - Relatório dos Impactos no Meio Ambiente □ Tomo 3 - Relatório de Desmatamento Racional da Bacia Hidráulica
PLANO DE REASSENTAMENTO - ETAPA B1 - Estudos dos Impactos no Meio Ambiente (EIA-RIMA) ✓ Volume I - Relatório EIA/RIMA □ Tomo 1 - Estudos dos Impactos Ambientais (EIA) □ Tomo 2 - Relatório dos Impactos no Meio Ambiente □ Tomo 3 - Relatório de Desmatamento Racional da Bacia Hidráulica - ETAPA B2 - Levantamento Cadastral e Plano de Reassentamento
PLANO DE REASSENTAMENTO - ETAPA B1 - Estudos dos Impactos no Meio Ambiente (EIA-RIMA) ✓ Volume I - Relatório EIA/RIMA □ Tomo 1 - Estudos dos Impactos Ambientais (EIA) □ Tomo 2 - Relatório dos Impactos no Meio Ambiente □ Tomo 3 - Relatório de Desmatamento Racional da Bacia Hidráulica - ETAPA B2 - Levantamento Cadastral e Plano de Reassentamento ✓ Volume I - Levantamento Cadastral
PLANO DE REASSENTAMENTO - ETAPA B1 - Estudos dos Impactos no Meio Ambiente (EIA-RIMA) ✓ Volume I - Relatório EIA/RIMA □ Tomo 1 - Estudos dos Impactos Ambientais (EIA) □ Tomo 2 - Relatório dos Impactos no Meio Ambiente □ Tomo 3 - Relatório de Desmatamento Racional da Bacia Hidráulica - ETAPA B2 - Levantamento Cadastral e Plano de Reassentamento ✓ Volume I - Levantamento Cadastral □ Tomo 1 - Relatório Geral

✓ Volume II - Relatório de Reassentamento
☐ Tomo 1 - Diagnóstico
☐ Tomo 2 - Detalhamento do Projeto de Reassentamento
☐ Tomo 3 - Relatório Final de Reassentamento
FASE C - PROJETO EXECUTIVO DA BARRAGEM
 ETAPA C1 - Projeto Executivo da Barragem
√ Volume I - Detalhamento do Projeto Executivo da Barragem
☐ Tomo 1 - Memorial Descritivo do Projeto
☐ Tomo 2 - Desenhos
□ Tomo 3 - Memória de Cálculo
☐ Tomo 4 - Especificações Técnicas e Normas de Medição e
Pagamento

- ETAPA C2 Instruir a elaboração do Certificado de Avaliação da sustentabilidade de Obra Hídrica – CERTOH
 - ✓ Volume I Instruir a elaboração do Certificado de Avaliação da sustentabilidade de Obra Hídrica – CERTOH

O presente relatório, denominado **Tomo 3 - Memória de Cálculo**, é parte integrante da **Etapa C1 - Volume I - Detalhamento do Projeto Executivo da Barragem Frecheirinha**, a qual tem por finalidade a criação de um reservatório no rio Caiçara, afluente do rio Coreaú.

☐ Tomo 5 - Quantitativos e Orçamento

☐ Tomo 6 - Relatório Síntese

ÍNDICE

ÍNDICE

APRESENTAÇÃO	2
LISTA DE FIGURAS	9
LISTA DE QUADROS	11
1 - INTRODUÇÃO	
1.1 - OBJETIVOS DESTE RELATÓRIO	14
1.2 - ANTECEDENTES HISTÓRICOS	14
2 - LOCALIZAÇÃO E ACESSO	17
3 - CARACTERÍSTICAS TÉCNICAS DA BARRAGEM FRECHEIRINHA	20
3.1 - FICHA TÉCNICA	20
3.2 - CURVA COTA X ÁREA X VOLUME DO BARRAGEM FRECHEIRINHA	23
4 - DESCRIÇÃO DO PROJETO EXECUTIVO	26
4.1 - CRITÉRIOS UTILIZADOS NA ESCOLHA DO PROJETO	26
4.1.1 - ESCOLHA DO EIXO E ARRANJO GERAL DA OBRA	26
4.1.2 - CARACTERIZAÇÃO DA FUNDAÇÃO DA BARRAGEM E DO VERTEDOURO	28
4.1.3 - Local de Bota-Fora	31
4.1.4 - Materiais de Construção	31
4.2 - SEÇÃO TIPO DO MACIÇO PRINCIPAL E DIQUES	33
4.3 - VERTEDOURO	40
4.4 - TOMADA D'ÁGUA E EQUIPAMENTOS HIDROMECÂNICOS	42
4.5 - TRATAMENTO DA FUNDAÇÃO	43
4.6 - INTERFERÊNCIAS COM OBRAS EXISTENTES	43
4.7 - DESENHOS	43
5 - MEMÓRIA DE CÁLCULO	45
5.1 - CÁLCULO DA FOLGA	45
5.2 - CÁLCULO DA COTA DO COROAMENTO	47
5.3 - CÁLCULO DA LARGURA DO COROAMENTO	48
5.4 - ESCOLHA DA INCLINAÇÃO DOS TALUDES	48
5.5 - DIMENSIONAMENTO DA PROTEÇÃO DE MONTANTE (RIP-RAP E TRANSIÇÃO)	50
5.6 - ESTUDOS DE PERCOLAÇÃO PELA BARRAGEM E FUNDAÇÃO	52
5.6.1 - Vazão pelo Maciço	52
5.6.2 - Vazão pela Fundação	55
5.6.3 - Vazão Total pelo maciço e pela fundação:	56

ΑN	EXO 3: MEMÓRIA DO CÁLCULO ESTRUTURAL DO VERTEDOURO	
	EXO 2: NOTAS DE SERVIÇOS (BARRAGEM, VERTEDOURO E TOMADA D'ÁGUA	
	EXO 1: CURVA-CHAVE RIO CAIÇARA	113
6 -	QUANTITATIVOS DO PROJETO	
	5.13.13 - DIMENSIONAMENTO DOS CHUMBADORES	
	5.13.12 - VERIFICAÇÃO DA ALTURA DOS MUROS LATERAIS DA BACIA DE DISSIPAÇÃO E RÁPIDO	
	5.13.11 - Da Bacia de Dissipação	
	5.13.10 - CÁLCULOS HIDRÁULICOS DO CANAL RÁPIDO	
	5.13.9 - Do Canal de Aproximação	
	5.13.8 - Ponto de Origem da Curva Circular – Ponto B	
	5.13.7 - Raios dos Círculos a Montante da Crista	
	5.13.6 - COORDENADAS DO PONTO C	
	5.13.5 - PARÂMETROS GEOMÉTRICOS DE ENTRADA NOS ÁBACOS	
	5.13.4 - VELOCIDADE DE APROXIMAÇÃO (VA)/CARGA CINÉTICA (HA)	
	5.13.3 - CHEIAS MILENAR E DECAMILENAR	
	5.13.2 - CÁLCULO DA PERDA DE CARGA NO CANAL DE APROXIMAÇÃO	
`	5.13.1 - CÁLCULO DO COEFICIENTE DE DESCARGAS	
ı	5.13 - DIMENSIONAMENTO DO VERTEDOURO	
	5.12.2.4 - Dimensionamento Malha de Aterramento e SPDA	
	5.12.2.3 - Dimensionamento dos Circuitos	
	5.12.2.2 - Sistema de Iluminação	
	5.12.2.1 - Sistema de Ar Condicionado	
	5.12.2 - MEMÓRIA DE CÁLCULO DO PROJETO ELÉTRICO DA CASA DE COMANDO	
•	5.12.1 - DIMENSIONAMENTO HIDRÁULICO DA GALERIA	
	5.12 - TOMADA D'ÁGUA	
	5.10 - REDE DE PLOXO DA BARRAGEM	
ı	5.10 - REDE DE FLUXO DA BARRAGEM	
	5.9.3 - RESULTADOS OBTIDOS	
	5.9.2 - PROGRAMA SLOPE/W	
•	5.9.1 - MÉTODO DE BISHOP SIMPLIFICADO	
	5.9 - ANÁLISE DE ESTABILIDADE DA BARRAGEM DE TERRA	
	5.8 - DIMENSIONAMENTO DO FILTRO HORIZONTAL	_
	5.7 - DIMENSIONAMENTO DO FILTRO VERTICAL	57

LISTA DE FIGURAS

LISTA DE FIGURAS

FIGURA 2.1 - MAPA DE LOCALIZAÇÃO E ACESSO DA ÁREA DO ESTUDO18
FIGURA 3.1 – GRÁFICO DA COTA X ÁREA X VOLUME DO AÇUDE FRECHEIRINHA24
FIGURA 4.1 – LAYOUT DA BARRAGEM FRECHEIRINHA27
FIGURA 4.2 - ARRANJO GERAL DA BARRAGEM COM AS ALTERNATIVAS ESTUDADAS DO
VERTEDOURO27
FIGURA 4.3 – LOCAÇÃO DOS FUROS DAS SONDAGENS NO EIXO DA BARRAGEM29
FIGURA 4.4 – SEÇÃO TIPO DA BARRAGEM
FIGURA 4.5 – GRANULOMETRIA DA JAZIDA 1035
FIGURA 4.6 – GRANULOMETRIA DO MATERIAL DO RIP-RAP E DA TRANSIÇÃO DE MONTANTE
36
FIGURA 4.7 – GRANULOMETRIA DO MATERIAL DA TRANSIÇÃO DE JUSANTE37
FIGURA 4.8 – GRANULOMETRIA DA AREIA GROSSA, BRITA E ENROCAMENTO DO ROCK-FILL
39
FIGURA 4.9 – GRANULOMETRIA DO SOLO DA JAZIDA 10, AREIA GROSSA E BRITA40
FIGURA 4.10 – VISTA SUPERIOR DO VERTEDOURO41
FIGURA 4.11 – VISTA LATERAL DO PERFIL DO VERTEDOURO TIPO CREAGER41
FIGURA 5.1 – PARÁBOLA DE KOZENY – SEÇÃO TRANSFORMADA53
FIGURA 5.2 – ESQUEMA DE FLUXO PELA FUNDAÇÃO55
FIGURA 5.3 – VALORES / EM FUNÇÃO DE B/Z56
FIGURA 5.4 – ESQUEMA DO FILTRO VERTICAL57
FIGURA 5.5 – ESQUEMA DO FILTRO HORIZONTAL58
FIGURA 5.6 – DETALHE DO DRENO HORIZONTAL TIPO SANDUÍCHE59
FIGURA 5.7 – DESENHO ESQUEMÁTICO DA LIBERAÇÃO PELA TOMADA D'ÁGUA76
FIGURA 5.8 – GRÁFICO COTA X VAZÃO80
FIGURA 5.9 – GRÁFICO ESVAZIAMENTO DO RESERVATÓRIO (COTA X TEMPO)81
FIGURA 5.10 – CÁLCULO DOS PARÂMETROS GEOMÉTRICOS DO CREAGER (USBR)97
FIGURA 5.11 – GRÁFICO COM COEFICIENTE DE DESCARGA (C0) NO SISTEMA MÉTRICO98
FIGURA 5.12 – PARÂMETRO GEOMÉTRICOS K E N DE CÁLCULO DO CREAGER101
FIGURA 5.13 – PARÂMETRO GEOMÉTRICOS XC, YC, R1 E R2 DE CÁLCULO DO CREAGER.102
FIGURA 5.14 – COORDENADAS DOS PONTOS DO PERFIL CREAGER105
FIGURA 5.15 – PERFIL HIDRÁULICO DO CANAL DE DESCARGA PARA Q= 987,39 M³/S107
FIGURA 5.16 - PARÂMETROS DE CÁLCULO DA BACIA DE DISSIPAÇÃO E RESSALTO
HIDRÁULICOS108
FIGURA 5.17 - RESULTADOS DOS CÁLCULO DA BACIA DE DISSIPAÇÃO E RESSALTO
HIDRÁULICO108
FIGURA 5.18 – ÁBACO PARA CÁLCULO DA BACIA DE DISSIPAÇÃO E RESSALTO HIDRÁULICO
(USBR)109
tpfe.com.br

LISTA DE QUADROS

LISTA DE QUADROS

QUADRO 3.1 - COTA X ÁREA X VOLUME	23
QUADRO 4.1 – RESUMO DOS ENSAIOS DAS AMOSTRA DOS MATERIAIS DAS JAZIDAS	31
QUADRO 4.2 – RESUMO DOS ENSAIOS DAS SONDAGENS SPP NO VERTEDOURO	32
QUADRO 4.3 – GRANULOMETRIA DA JAZIDA 10	34
QUADRO 4.4 – GRANULOMETRIA DO MATERIAL DO RIP-RAP (ENROCAMENTO)	36
QUADRO 4.5 – GRANULOMETRIA DO MATERIAL DA TRANSIÇÃO DE MONTANTE (BRITA)	36
QUADRO 4.6 – GRANULOMETRIA DO MATERIAL DA TRANSIÇÃO DE JUSANTE (BRITA)	37
QUADRO 4.7 – GRANULOMETRIA DA AREIA GROSSA	38
QUADRO 4.8 – GRANULOMETRIA DA BRITA DA TRANSIÇÃO DO ROCK-FILL	38
QUADRO 4.9 – GRANULOMETRIA DO ENROCAMENTO DO ROCK-FILL	39
QUADRO 5.1 – INCLINAÇÃO DOS TALUDES – BUREAU OF RECLAMATION	49
QUADRO 5.2 – INCLINAÇÃO DOS TALUDES - TERZAGHI	49
QUADRO 5.3 – INCLINAÇÃO DOS TALUDES – PAULO T. CRUZ	49
QUADRO 5.4 – PARÂMETROS GEOTÉCNICOS ADOTADOS	62
QUADRO 5.5 – FATORES DE SEGURANÇA DA ANÁLISE DE ESTABILIDADE ESTÁTICA	64
QUADRO 5.6 – FATORES DE SEGURANÇA DA ANÁLISE DE ESTABILIDADE SÍSMICA	64
QUADRO 5.7 – CURVA-CHAVE DA TOMADA D'ÁGUA	80
QUADRO 5.8 – CHEIAS MILENAR E DECAMILENAR	99
QUADRO 5.9 – PARÂMETRO DE CÁLCULO DO CREAGER	100
QUADRO 5.10 – COORDENADAS DA SOLEIRA DO VERTEDOURO	104
QUADRO 5.11 – CÁLCULO DA CURVA DE REMANSO DO CANAL RÁPIDO	106

1 - INTRODUÇÃO

1 - INTRODUÇÃO

1.1 - OBJETIVOS DESTE RELATÓRIO

Este relatório é o **Tomo 3 – Memória de Cálculo**, que compõe um dos produtos da **Etapa C1 - Volume I - Detalhamento do Projeto Executivo da Barragem** inserido na **Fase C - Projeto Executivo da Barragem**, objeto do Contrato nº 03/SRH 2017, que tem como objetivo a "Contratação de Serviços de Consultoria para a Elaboração dos Estudos de Viabilidade, Estudos Ambientais (EIA-RIMA), Levantamento Cadastral, Plano de Reassentamento e Projeto Executivo da Barragem Frecheirinha, no Município de Frecheirinha, no Estado do Ceará, firmado entre a SRH-Secretaria de Recursos Hídricos do Estado do Ceará e a Empresa TPF Engenharia Ltda, como decorrência da citada empresa ter sido vencedora do processo licitatório previsto no Edital de Concorrência Pública Nº 20160001/SRH/CCC.

A finalidade deste relatório é apresentação à SRH da Memória de Cálculo das estruturas componentes do Projeto Executivo da Barragem Frecheirinha, baseados principalmente nos Estudos Básicos: Estudo Hidrológicos, Estudos Geológicos/Geotécnicos e Topográficos realizados.

1.2 - ANTECEDENTES HISTÓRICOS

A bacia do rio Coreaú, situada na porção noroeste do estado do Ceará, com uma área total de 10.634 km², foi objeto de estudos para o aproveitamento de seus recursos hídricos, que tiveram início na década de 70. Naquela ocasião a bacia possuía apenas duas barragens de grande porte: Tucunduva (Ano 1919 - 40,2 hm³) e Várzea da Volta (Ano 1919 - 12,5 hm³).

No final da década de 80 foram construídos os açudes Martinópole (Ano 1984 - 23,2 hm³) e Diamante (Ano 1988 - 13,2 hm³), porém a bacia continuava com um grande vazio hídrico. Dentro deste cenário, o DNOCS contratou a empresa Sirac - Serviços Integrados de Assessoria e Consultoria Ltda para desenvolver o Estudo de Viabilidade do Vale do Coreaú, cujas conclusões reforçaram a necessidade de implantação de reservatórios na referida bacia. Nesse mesmo estudo, foi identificado um boqueirão no rio Caiçara que se revelava adequado para a implantação de um barramento com potencial de acumular cerca de 100 hm³.

tpfe.com.br

ENGENHARIA

Em dezembro de 1988 a Sirac apresentou ao DNOCS a documentação técnica referente ao "Anteprojeto da Barragem Frecheirinha", no rio Caiçara, com uma capacidade de 85 hm³ e uma vazão de regularização de 0,62 m3/s (90% de garantia) e 0,50 m3/s (95% de garantia), objetivando a irrigação e o abastecimento de água

para as cidades circunvizinhas.

Atualmente a bacia apresenta um total de nove reservatórios gerenciados pela COGERH. Complementando os quatro reservatórios citados anteriormente, temos ainda as barragens Trapiá III (Ano 1961 – 5,5 hm³), Premuoca (Ano 1981 – 5,2 hm³),

Angicos (Ano 1998 - 56,0 hm³), Gangorra (Ano 1999 - 62,5 hm³) e Itauna (Ano 2001

 $-77,5 \text{ hm}^3$).

O vale do rio Caiçara, dentro da bacia do rio Coreaú, tem esta denominação

até a confluência com o rio Ubajara, a partir de onde passa a ser denominado de rio

Coreaú. Nascendo na encosta da serra da Ibiapaba, no município de Ibiapina, atinge

o litoral após percorrer 130 km desde sua nascente.

O anteprojeto da SIRAC serviu de subsídio aos estudos atuais pois foram

realizados novos Estudos Básicos, novo Estudo de Alternativas e novo Anteprojeto e,

a partir deste, é que foi desenvolvido o referido Projeto Executivo.

O objetivo deste barramento, que era de aproveitar as águas oriundas da

represa, em irrigação das manchas de solo existentes a jusante desta, hoje é de

promover o controle dos recursos hídricos da bacia hidrográfica do rio Coreaú,

examinando detalhadamente o atendimento às demandas de águas das regiões de

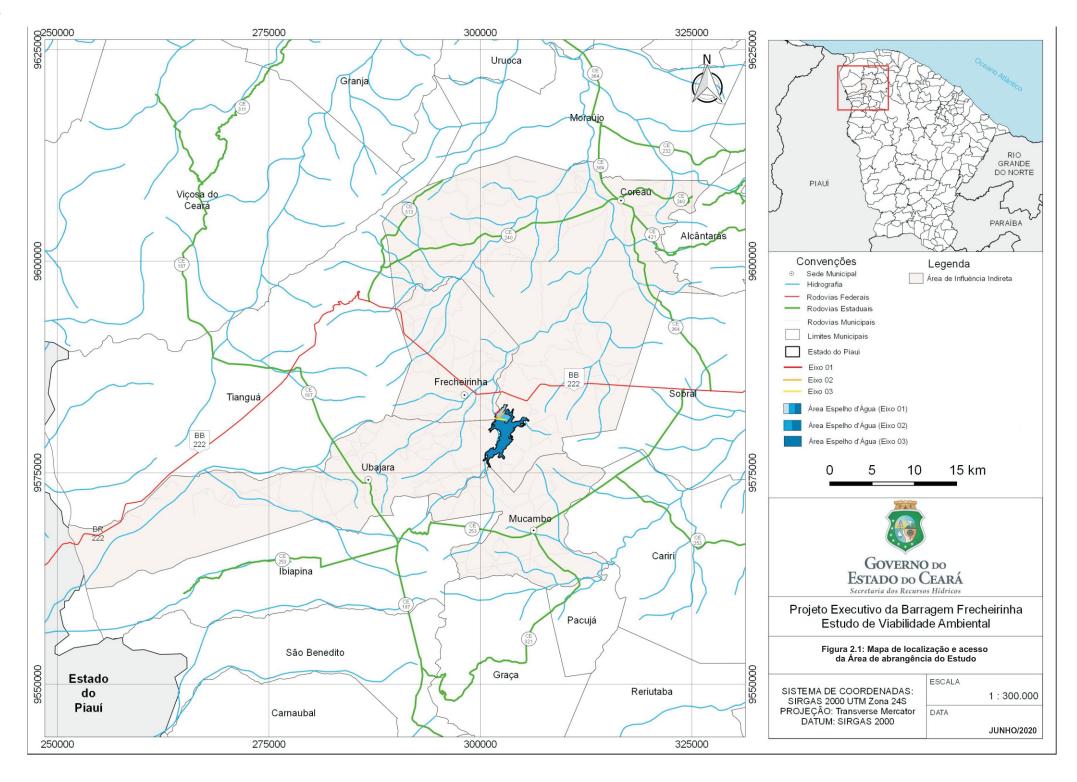
influência. Também tem como objetivo o aproveitamento racional da água acumulada

neste reservatório com a finalidade de abastecimento humano e animal, lazer,

piscicultura, e, como objetivo secundário, a irrigação.

tpfe.com.br

2 - LOCALIZAÇÃO E ACESSO


2 - LOCALIZAÇÃO E ACESSO

A Barragem Frecheirinha será formada pelo barramento do riacho Caiçaras, afluente do rio Coreaú, tendo sua bacia hidráulica abrangendo terras dos municípios de Frecheirinha, Coreaú, Ubajara e Mucambo. A barragem fechará o boqueirão existente nas imediações da localidade de Caiçara de Cima, no município de Frecheirinha, distando 4,2 km da sede deste município.

Desde Fortaleza o acesso a área do empreendimento pode ser feito através da BR-222, passando pelas cidades de Caucaia, Croatá, São Luís do Curu, Umirim, Itapajé, Irauçuba, Forquilha, Sobral até atingir a cidade de Frecheirinha, 1º acesso, percorrendo-se cerca de 290,0 km. A partir daí, por ruas revestidas por asfalto e pedras e depois por estrada de terra percorre-se 4,2 km até a localidade de Caiçara de Cima, local do eixo do barramento.

O acesso aéreo a área do empreendimento pode ser feito através dos aeródromos de Coreaú, Sobral e São Benedito, a partir de onde têm-se que direcionar para a BR-222 até atingir a cidade de Frecheirinha. O mapa de localização e acessos da área de abrangência do estudo encontra-se apresentado na **Figura 2.1**.

tpfe.com.br

3 - CARACTERÍSTICAS TÉCNICAS DA BARRAGEM FRECHEIRINHA

3 - CARACTERÍSTICAS TÉCNICAS DA BARRAGEM FRECHEIRINHA

3.1 - FICHA TÉCNICA

A seguir é mostrado a Ficha Técnica do Projeto Executivo da Barragem Frecheirinha onde se discrimina os principais elementos técnicos.

FICHA TÉCNICA

Identificação

Denominação:	Barragem Frecheirinha	
Estado:	Ceará	
Município:	Frecheirinha	
Localidade:	Caiçara de Cima	
Coordenadas UTM:	Leste 302056E / Norte 9582167N	
Bacia:	Coreaú	
Rio barrado:	Rio Caiçara	
Proprietário:	. Governo do Estado de Ceará/SRH	
Autor do projeto:	TPF Engenharia	
Data do projeto:	Agosto/2020	
Bacia Hidrográfica		
Área:	198,5 km²	
Perímetro da bacia hidrográfica:	82,1 km	
Comprimento do rio:	28,9 km	
Cota do talvegue a montante:	900 m	
Cota do talvegue a jusante:	120 m	
Declividade média do rio:	26,99 m/km	
Características do Reservatório		
Área da bacia hidráulica (cota 131,00m):	1101,546 ha	

Volume hidráulico armazenável (cota 131,00 m):82,177 hm³
Volume morto do reservatório / mínimo operacional (cota 116,00m): 2,849 hm³
Volume útil p/ vazão sanitária (cota 114,36 a 116,00):
Volume médio afluente anual:42,2 hm³/ano
Vazão Regularizada com 90% de Garantia:20,67 hm³/ano
Vazão Regularizada com 90% de Garantia:
Vazão afluente max. de projeto/vazão pico (TR=1.000anos): 912,21 m³/s
Vazão max. de projeto amortecida (TR=1.000anos) 111,96 m³/s
Vazão afluente max maximorum/vazão pico (TR=10.000anos) 1.118,10 m³/s
Vazão max. maximorum amortecida (TR=10.000anos)147,42 m³/s
Nível d'água max. (TR=1.000anos):
Nível d'água max. maximorum (TR=10.000anos):132,11 m
Barragem de Terra
Tipo:Seção Mista (Terra/Enrocamento)
Localização: estaca 1+7,50 a 31+0,50 m
Altura máxima do maciço:27,00 m
Largura do coroamento:7,00 m
Extensão pelo coroamento:
Cota do coroamento:
Revanche:
Talude de Montante:
Talude de Jusante:
Diques
Tipo: Seção Homogênea de Terra
Quantidade: 03 unidades

Altura máxima (dique 01):	4,00 m
Extensão pelo coroamento (dique 01):	192,10 m
Altura máxima (dique 02):	3,30 m
Extensão pelo coroamento (dique 02):	50,38 m
Altura máxima (dique 03):	3,10 m
Extensão pelo coroamento (dique 03):	54,80 m
Largura do coroamento:	4,00 m
Cota do coroamento:	134,00 m
Talude de Montante (diques):	1,0(V):2,0(H)
Talude de Jusante (diques):	1,0(V):2,0(H)
Vertedouro	
Tipo: creager, com canal de restituição revestido, muros e	e bacia de dissipação
Localização (eixo da barragem):	Estaca 54+7,28 m
Comprimento total:	489,50 m
Cota do canal de aproximação (escavado em rocha):	129,00 m
Cota da soleira:	131,00 m
Lâmina máxima (TR=10.000anos):	1,11 m
Cota do canal de restituição (muros laterais e fundo reves	stido: variável
Material creager: concreto massa / canal de restituição armado	e muros: concreto
Largura do creager:	60,00 m
Altura do total do creager:	6,00 m
Altura do paramento de montante (útil):	2,00 m
Tomada de água	
Tipo: tubo de aço	carbono ASTM A-36

Localização (eixo da barragem): Estaca 29+10,00 m (ombreira direi	ita)
Revestimento: envelopado em concreto e junta fungeba	and
Diâmetro:	nm
Comprimento da galeria:115,00) m
Cota do eixo da tubulação:114,36	m í
Controle de montante:	
Registro de gaveta flageado com volante (FoFo):1200 n	nm
Controle de jusante:	
Válvula borboleta flangeada (FoFo):1200 n	nm
Válvula dispersora (Aço):	nm

3.2 - CURVA COTA X ÁREA X VOLUME DO BARRAGEM FRECHEIRINHA

Os dados da Curva Cota x Área x Volume são mostrados no **Quadro 3.1** e as curvas são mostradas na **Figura 3.1**.

Quadro 3.1 - Cota x Área x Volume

cota (m)	Área (ha)	Volume Acumulado (hm³)
107,000	0,000	0,000
108,000	0,536	0,003
109,000	1,155	0,011
110,000	5,194	0,043
111,000	8,424	0,111
112,000	18,618	0,246
113,000	37,608	0,527
114,000	63,891	1,035
115,000	89,253	1,801
116,000	120,473	2,849
117,000	156,016	4,232
118,000	194,933	5,986
119,000	234,302	8,133
120,000	309,193	10,850
121,000	355,168	14,172
122,000	394,369	17,919
123,000	448,692	22,135

cota (m)	Área (ha)	Volume Acumulado (hm³)
124,000	516,515	26,961
125,000	580,425	32,446
126,000	660,436	38,650
127,000	725,851	45,581
128,000	823,881	53,330
129,000	903,362	61,966
130,000	1018,610	71,576
131,000	1101,546	82,177
132,000	1248,117	93,925
133,000	1361,456	106,973
134,000	1498,665	121,274
135,000	1631,253	136,923
136,000	1766,142	153,910

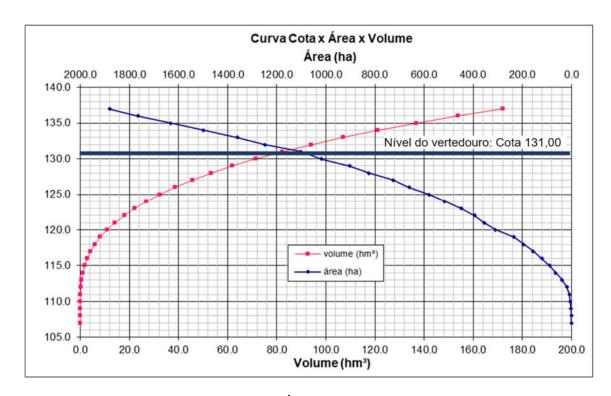


Figura 3.1 – Gráfico da Cota x Área x Volume do Açude Frecheirinha

4 - DESCRIÇÃO DO PROJETO EXECUTIVO

ENGENHARIA

4 - DESCRIÇÃO DO PROJETO EXECUTIVO

A escolha da Alternativa 01 do eixo da Barragem Frecheirinha, conforme detalhado no estudo de alternativas e no Anteprojeto, foi realizada com base nos dados dos estudos e das investigações de campo realizadas e seu arranjo final ficou composto por uma barragem de terra mista (principal), três pequenos diques de terra de fechamento, um vertedouro escavado na ombreira direita, com soleira tipo creager e canal de restituição revestido de concreto e uma tomada de água com galeria envelopada na ombreira direita (estaca 29+10,00), conforme mostram os desenhos

no Tomo 2 do Volume I - Projeto Executivo da Barragem.

As principais características das obras e das estruturas que compõem este

Projeto Executivo da Barragem Frecheirinha são apresentadas a seguir:

4.1 - CRITÉRIOS UTILIZADOS NA ESCOLHA DO PROJETO

Os principais critérios técnicos e as conceituações, que foram usadas no desenvolvimento do Projeto Executivo da Barragem Frecheirinha, são apresentados

a seguir com objetivo de um perfeito entendimento de sua evolução, bem como de

todos os procedimentos e metodologias aqui empregadas.

4.1.1 - ESCOLHA DO EIXO E ARRANJO GERAL DA OBRA

A escolha do local do barramento do Barragem Frecheirinha (Alternativa 01) e

do local para a formação de seu lago, propriamente dito, teve como condicionantes o

relevo da região, as condições geomorfológicas, geológicas e geotécnicas, as

informações emanadas dos estudos hidrológicos e a existência de obras e edificações

ao longo do vale, além de garantir o máximo volume acumulável sem causar

minimamente interferência com as torres da CHESF existentes as margens da bacia

hidráulica que se formará.

tpfe.com.br

26

CNPJ 12285.441/0001-66

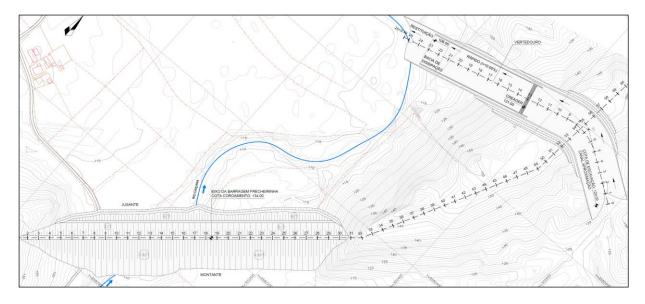


Figura 4.1 – Layout da Barragem Frecheirinha

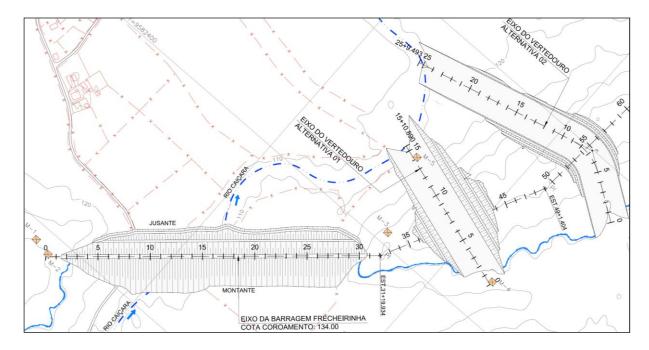


Figura 4.2 – Arranjo Geral da Barragem com as Alternativas Estudadas do Vertedouro

As características básicas das fundações, em seus aspectos geológicos e geotécnicos, balizaram o tipo de barragem escolhida e a sua fundação, tendo sido definida a implantação de uma barragem de terra mista com sistemas de drenos vertical e horizontal.

ENGENHARIA

Além da barragem principal, foram previstos três pequenos diques de

fechamento com seção composta de terra mista.

A região onde ficou localizada a bacia hidráulica apresenta uma topografia

pouco suavizada com solos rasos nas encostas e uma calha do rio encaixada e

profunda.

Os desenhos 02 e 11 do Tomo 2, Volume I, mostram, respectivamente, a

planta da bacia hidrográfica e a seção tipo da barragem.

Os desenhos 06 a 08 do Tomo 2, Volume I, mostram os perfis geológico e

geotécnico do eixo do barramento e dos vertedouros estudados.

4.1.2 - CARACTERIZAÇÃO DA FUNDAÇÃO DA BARRAGEM E DO VERTEDOURO

Visando fazer a análise da formação geológica das camadas onde serão

assentes o maciço da barragem e o Vertedouro, foi elaborada uma campanha de

sondagens geotécnicas a percussão e mista, de forma que o exame desses perfis

individuais associadas a uma seção geotécnica do subsolo permitiu fazer um

entendimento do subsolo local.

Para caracterização da fundação do eixo do barramento (alternativa 01 do

relatório dos estudos de alternativas) foram realizadas 15 sondagens, sendo 6

sondagens à percussão, 7 sondagens mistas (iniciada por processo percussivo e

prosseguida com sonda rotativa) e 2 sondagens mistas inclinadas (com inclinação de

45º), conforme mostra os desenhos 06 a 08 do Tomo 2, Volume I e a Figura 4.3 a

seguir.

tpfe.com.br

28

CNPJ 12285.441/0001-66

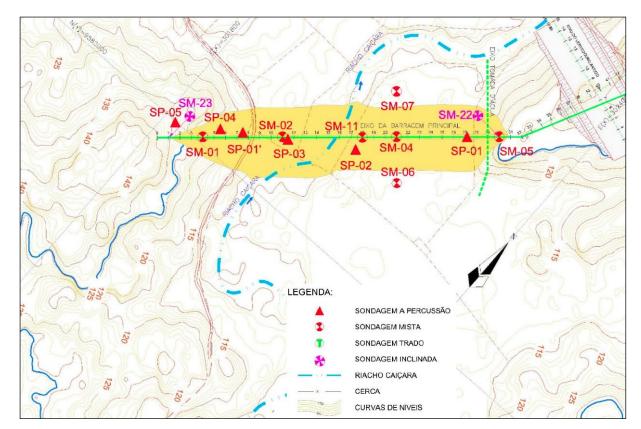


Figura 4.3 – Locação dos Furos das Sondagens no Eixo da Barragem

Com o intuito de avaliar a permeabilidade dos solos da fundação e obter informações qualitativas sobre a circulação de água através das fissuras do substrato rochoso, foram realizados ensaios de campo em furos de sondagens no eixo da barragem. No trecho onde foram realizadas perfurações com sonda rotativa, estes testes consistiram dos ensaios de perda d'água sob pressão (Lugeon).

A partir dessas sondagens foi preparado o perfil geotécnico do subsolo do eixo barrável. Desta forma, foi definido uma linha de escavação obrigatória e uma linha de aprofundamento do cut-off que podem ser vistas nos **desenhos 09 a 21 do Tomo 2, Volume I**.

Tomou-se o cuidado de garantir que a base do cut-off penetre pelo menos 50cm dentro do solo residual ou da rocha decomposta.

A trincheira de vedação (cut-off) será executada abaixo da linha das escavações obrigatórias, nos locais e nas profundidades mostradas nas seções

ENGENHARIA

transversais da barragem e no perfil geológico do eixo barrável. A largura do cut-off foi definida baseado nos estudos desenvolvidos pelo U.S. Bureau of Reclamation.

A escavação obrigatória tem a finalidade de garantir que os espaldares fiquem assentes em solo com SPT>10 golpes/30cm para a zona com altura superior a 20,00m e SPT>7 golpes/30cm para as demais zonas da barragem.

No eixo do vertedouro (alternativa 01) foram realizadas 3 sondagens mistas e no eixo do vertedouro (alternativa 02) também foram realizadas 3 sondagens mistas, conforme mostra os **desenhos 06 a 08 do Tomo 2, Volume I**.

Apesar das sondagens no eixo do vertedouro (alternativa 01) não terem mostrado a existência de afloramento de quartizito e apresentarem um perfil composto predominantemente por ardósia, um mapeamento superficial mostra a sua existência. Foi estudado um segundo local para o posicionamento (alternativa 02), o qual têm as mesmas características geológicas da alternativa original, ou seja, uma predominância de ardósia desde a superfície do terreno natural, mas este além de situar-se mais afastado do eixo do barramento e possibilitar com isso um menor risco a segurança, também possui um canal de restituição que é menos inclinado (cerca de 10% de declividade) e sua saída na bacia de dissipação está na direção favorável do rio, minimizando os efeitos de retorno das vazões efluentes em direção ao talude de jusante da barragem (ver desenhos 05 a 08 do Tomo 2, Volume I). Diante destes aspectos foi a escolhida e detalhada a alternativa 2 do vertedouro neste Projeto Executivo.

Na fase de detalhamento do projeto executivo foram realizadas novas sondagens mistas de modo a serem confirmadas as cotas finais de escavação comum e em 3ª categoria, bem como dirimir quaisquer dúvidas quanto ao posicionamento das estruturas de controle e bacia de dissipação e da necessidade de ancoragem das lajes estruturais em concreto.

Caso seja determinada a realização de sondagens no início da construção, deverão ser quantificadas e orçadas na planilha da obra.

Os resultados destas sondagens realizadas e ensaios de campo são apresentados nos desenhos do Tomo 4A, sob forma de perfis individuais do subsolo no local de cada furo.

4.1.3 - LOCAL DE BOTA-FORA

Todos os materiais das escavações da obra e que não tiverem destino na construção da barragem, tornar-se-ão resíduos e, portanto, devem receber um destino. Os organismos que tratam da preservação do meio ambiente têm recomendado que este material ocupe uma parte da bacia hidráulica.

4.1.4 - MATERIAIS DE CONSTRUÇÃO

Para a definição das Seção Tipo dos barramentos foram estudas 10 áreas de empréstimos (jazidas) denominadas de J-01, J-02, J-03, J-04, J-05, J-06, J-07, J-08, J-09 e J-10, que apresentam um potencial de exploração de 1.240.000 m³. Estas jazidas de solos são compostas, em geral, de materiais SC (areia argilosa), conforme mostra o **Quadro 4.1**, o qual apresenta um resumo dos resultados dos ensaios.

Quadro 4.1 - Resumo dos Ensaios das Amostra dos Materiais das Jazidas

JAZIDAS ESTUDADAS		J-01	J-02	J-03	J-04	J-05	J-06	J-07	J-08	J-09	J-010	
NÚMERO DE FUROS ENSAIADOS		12	12	12	24	20	20	20	10	12	24	
	PROFUNDIDADE DE MÉDIA		0,15	0,10	0,05	0,15	0,15	0,15	0,10	0,10	0,10	0,00
(n	(m) ATÉ		1,20	1,30	1,30	2,00	1,50	1,30	1,50	1,10	1,30	1,30
GRANULOMETRIA (VALORES MÉDIOS)												
		2"	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
¥ ¥		1"	98%	100%	100%	100%	99%	99%	98%	100%	100%	97%
l j	NDO	3/8"	90%	94%	98%	94%	92%	84%	92%	91%	92%	85%
lo	SSA	Nº 4	80%	85%	94%	88%	79%	69%	83%	83%	83%	74%
GRANULOMETRIA	% PASSANDO	Nº 10	72%	77%	87%	79%	67%	60%	75%	75%	74%	65%
GR/	%	Nº 40	56%	59%	62%	57%	49%	45%	59%	53%	52%	50%
		Nº 200	37%	38%	38%	36%	34%	28%	36%	37%	35%	34%
	LIMITES DE ATTERBERG (VALORES MÉDIOS)											
LL			35%	36%	35%	34%	33%	37%	35%	35%	36%	36%
LP			24%	24%	23%	22%	22%	26%	24%	24%	25%	25%
	IP		11%	12%	12%	12%	12%	11%	11%	11%	12%	12%
CLASSIFICAÇÃO U.S.C.S. (VALORES MÉDIOS)												
CLASSIFICAÇÃO UCS		SC	SC	SC	SC	SC	SC/SM	SC	SC	SC/SM	SC/SM	
COMPACTAÇÃO (VALORES MÉDIOS)												
H _{ÓTIMA} (%)			13,7	13,9	12,8	12,8	12,7	11,9	13,0	13,0	12,0	13,6
D _{мÁX} (g/cm3)		1.830	1.816	1.866	1.869	1.837	1.859	1.812	1.848	1.845	1.855	

tpfe.com.br

No relatório dos Estudos Geológicos e Geotécnicos, Tomo 4 e Tomo 4A, Volume I - Estudos Básico da Etapa A2, são apresentados todos os boletins com a classificações dos materiais coletados nas jazidas e os respectivos resultados dos ensaios realizados.

Este mesmo relatório ainda apresenta as 25 sondagens do tipo pá e picareta (SPP) que foram executadas na área onde será implantado o vertedouro da Barragem Frecheirinha, que tinham como finalidade avaliar se os materiais provenientes destas escavações obrigatórias apresentam características para aplicação no talude de jusante do maciço. O **Quadro 4.2** traz um resumo dos ensaios de caracterização realizados em 09 das 25 sondagens SPP, os quais indicam que na parte mais superficial do terreno com profundidade máxima de 2,00 m os materiais possuem características equivalentes aos materiais das jazidas estudadas, sendo em geral também do tipo SC e com granulometria média dentro da faixa de projeto.

Quadro 4.2 - Resumo dos Ensaios das Sondagens SPP no Vertedouro

SONDAGENS SPP		SPP-01	SPP-05	SPP-06	SPP-09	SPP-13	SPP-14	SPP-19	SPP-21	SPP-25	MÉDIA	
PROFUNDIDADE DE MÉDIA		0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	0,10	
(m)		ATÉ	1,65	1,30	1,60	1,20	1,60	1,50	1,50	0,60	2,00	1,60
						GRAN	ULOMETR	IA				
		2"	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
₹		1"	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
GRANULOMETRIA	% PASSANDO	3/8"	90%	85%	89%	83%	89%	85%	92%	88%	91%	89%
lo No	SSA	Nº 4	82%	77%	79%	74%	81%	78%	81%	79%	84%	79%
N V	PA .	Nº 10	74%	70%	70%	67%	72%	71%	74%	71%	74%	70%
GR/	%	Nº 40	51%	52%	51%	48%	50%	52%	53%	51%	53%	51%
		Nº 200	32%	33%	32%	30%	31%	31%	33%	32%	30%	32%
	LIMITES DE ATTERBERG											
LL			37%	37%	38%	36%	38%	35%	37%	36%	35%	37%
	LP		24%	26%	26%	24%	26%	25%	25%	24%	25%	26%
	IP		12%	11%	12%	12%	12%	10%	12%	12%	11%	11%
CLASSIFICAÇÃO U.S.C.S.												
CLASSIFICAÇÃO UCS		SC	SC	SC	SC	SC	SC	SC	SC	SC	SC	
COMPACTAÇÃO (VALORES MÉDIOS)												
Нотіма (%)			11,8	12,1	13,5	13,1	12,2	12,1	12,1	13,3	12,2	12,2
D _{MÁX} (g/cm3)			1.796	1.762	1.733	1.807	1.744	1.745	1.765	1.786	1.777	1.821

Dessa maneira, admite-se a aplicação dos materiais das escavações obrigatórias do vertedouro no talude de jusante do maciço da barragem, de modo que os materiais das escavações mais superficiais devem ser selecionadas e empregados

na parte mais interna do talude imediatamente após o filtro vertical, enquanto os matérias das escavações mais profundas serão também selecionados e empregados na parte mais externa do talude de jusante.

Para fonte de material pétreo destinado aos espaldares de enrocamentos e concretos, foi identificado um afloramento de rocha granítica sã, de coloração acinzentada, na localidade de Roça do Mato, próxima a Serra do Carmutim, com distância média de transporte de 7,37 Km à montante do eixo da barragem.

Nos estudos geotécnicos foram identificados 04 areais a montante e jusante do eixo da barragem, os quais são necessários para suprir os volumes para construção dos filtros de drenagem interna e confecção dos concretos das estruturas.

O desenho 23 do Tomo 2, Volume I, mostra a localização das áreas de empréstimos, dos 04 areais identificados e da pedreira 01.

4.2 - SEÇÃO TIPO DO MACIÇO PRINCIPAL E DIQUES

Com base nas condições locais da geotecnia, da geometria do boqueirão e da disponibilidade dos materiais de construção, foi projetada uma seção do tipo mista (terra/enrocamento), com a aplicação de material de jazida na zona de montante da seção e o uso de material proveniente das escavações do vertedouro, no caso um material do tipo ardósia, após a realização de ensaios de caracterização atestou-se sua aplicação no corpo da barragem na seção de jusante após o filtro vertical, conforme o desenho 11 do Tomo 2, Volume I e a Figura 4.4 abaixo.

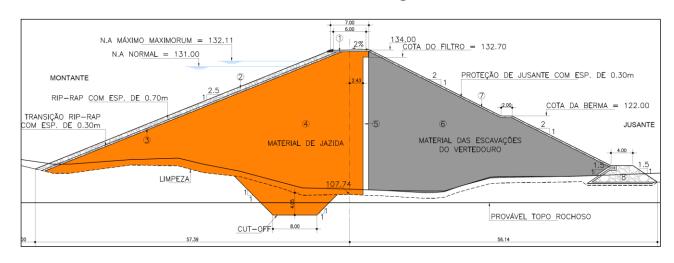


Figura 4.4 - Seção Tipo da Barragem

tpfe.com.br

A barragem de terra se desenvolve entre as estacas 1+7,50 a 31+0,50, com a crista do coroamento na cota 134,00 m, largura do coroamento igual a 7,00 m e altura máxima de 27,00 m. A barragem é do tipo seção mista (terra/enrocamento) e será executada com solos das jazidas J-08, J-09, J-10 (maior volume disponível, conforme mostra o relatório do Tomo 4A), J-03, J-02 e J-04, nessa sequência hierárquica de utilização de material devido a sua distância média ao eixo da barragem, na parte da seção a montante do filtro vertical, inclusive cut-off, já a parte da seção a jusante do filtro vertical será executada prioritariamente com material oriundo das escavações obrigatórias do vertedouro, como dito acima.

Os três diques de terra serão executados prioritariamente com solos da jazida J-10, com coroamento na cota 134,00 m, largura do coroamento igual a 4,00 m e altura máxima de 4,00 m.

Os materiais a serem empregados na construção do maciço e suas características granulométricas são apresentados a seguir:

O solo compactado do maciço apresenta a seguinte granulometria dos materiais da Jazida 10, mostrado no **Quadro 4.3** e na **Figura 4.5** a seguir:

Quadro 4.3 - Granulometria da Jazida 10

Pen	eira	Faixa Granulométrica			
#	mm	(% passando)			
2"	50,8	100			
1"	25,4	93 - 100			
3/8"	9,5	77 - 92			
Nº 4	4,76	63 - 85			
Nº 10	2,00	50 - 80			
Nº 40	0,42	33 - 67			
Nº 200	0,075	26 - 43			

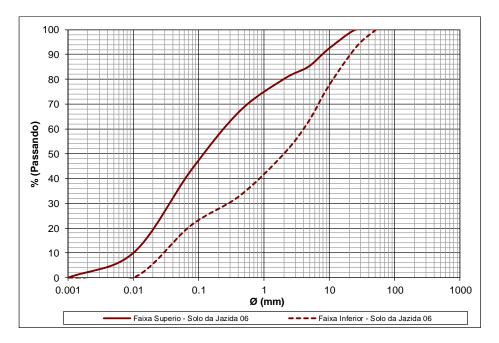


Figura 4.5 – Granulometria da Jazida 10

Na camada final da crista, com 0,20 m de espessura, será utilizado com cascalho natural argiloso ou produto de britagem, com caimento de 2% para montante e nos limites dos bordos colocados meios-fios com abertura para montante.

Para a seção da barragem o talude de montante terá inclinação de 1,0 (V): 2,5 (H) e o talude de jusante 1,0 (V): 2,0 (H), já para os diques os taludes de montante e jusante são iguais a 1,0 (V): 2,0 (H). O talude de montante será protegido da ação da energia da onda do reservatório com a construção de um Rip-Rap formado por uma camada de 0,70 m de espessura, de blocos de rocha sã da pedreira P-01, assentes sobre uma camada de transição com 0,30 m de espessura, formada por produtos de britagem.

A drenagem superficial é garantida por meio fios dispostos no coroamento e por uma rede de canaletas sobre o talude de jusante, posicionadas a partir da berma projetada (berma na cota 122,00 m) e nos encontros laterais com o terreno natural. A drenagem superficial é apresentada nos **desenhos 43 a 44 do Tomo 2 - Desenhos, Volume I**.

O Rip-Rap a ser usado no talude de montante apresenta a granulometria, mostrada no **Quadro 4.4** e na **Figura 4.6**.

tpfe.com.br

Quadro 4.4 – Granulometria do Material do Rip-Rap (Enrocamento)

Peneira (mm)	Faixa Granulométrica (% passando)	
700mm	100	
500mm	74-98	
300mm	20-58	
100mm	-	

A camada de transição, entre o Rip-Rap e o maciço, tem a granulometria mostrada no **Quadro 4.5** e na **Figura 4.6**.

Quadro 4.5 – Granulometria do Material da Transição de Montante (Brita)

Pe	neira	Faixa Granulométrica	
#	mm	(% passando)	
-	200	100	
-	100	100	
2"	50,8	90-100	
1"	25,4	70-82	
3/8"	9,5	42-54	
Nº 4	4,76	14-42	
Nº 10	2,00	0-18	
Nº 40	0,42	-	

Na **Figura 4.6** a seguir são mostradas as faixas granulométricas dos materiais constituintes do Rip-Rap e Transição do talude de montante.

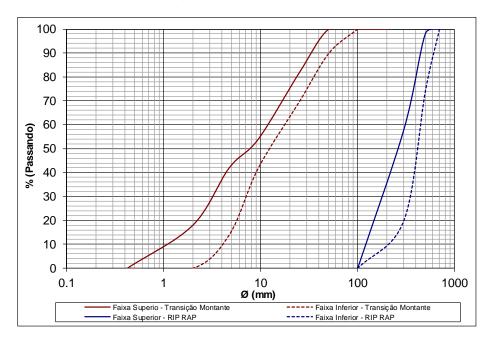


Figura 4.6 – Granulometria do Material do Rip-Rap e da Transição de Montante

O talude de jusante será protegido por uma camada de 0,30 m de espessura de material britado (bica corrida), em toda sua extensão, conforme a granulometria mostrada no quadro abaixo.

Quadro 4.6 – Granulometria do Material da Transição de Jusante (Brita)

Peneira (mm)	Faixa Granulométrica (% passando)	
300	100	
1" (25,4)	48 – 100	
3/8" (9,5)	28 – 74	
Nº 4 (4,8)	12 – 50	
Nº 10 (2,0)	-	

Na **Figura 4.7** a seguir é mostrada a faixa granulométrica do material constituinte da proteção do talude de jusante.

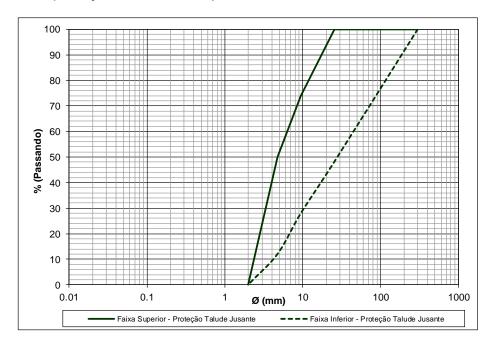


Figura 4.7 – Granulometria do Material da Transição de Jusante

Para o sistema de drenagem interna do maciço da barragem foi previsto um filtro vertical e um tapete drenante, complementado por uma trincheira drenante. O filtro vertical tipo chaminé terá 1,00 m de espessura e será executado com areia do areal A-01 e ficará com o topo na cota 132,70 m, 1,70 m acima da cota da soleira.

O filtro horizontal (dreno tipo sanduíche) possui espessura total de 1,00 m e consiste na superposição de três camadas drenantes composta por duas camadas inferior e superior de areia grossa, extraída do areal A-01, com espessura de 0,30m

cada, e por uma camada intermediária de brita na espessura de 0,40m tendo as mesmas características granulométricas da brita da transição do enrocamento de pé.

No **Quadro 4.7** a seguir é mostrada a faixa granulométrica da areia grossa que formará o sistema de drenagem interna da Barragem.

Quadro 4.7 - Granulometria da Areia Grossa

Peneira		Faixa Granulométrica	
#	mm	(% passando)	
1/2 pol	12.5	100	
3,8 pol	9.5	98 - 99	
Nº 04	4.8	94 - 98	
Nº 10	2	65 - 93	
Nº 16	1.2	40 - 82	
Nº 30	0.6	15 - 57	
Nº 40	0.42	4 - 28	
Nº 80	0.18	0 - 8	
Nº 100	0.15	-	

A proteção no pé no talude de jusante será formada por uma camada de enrocamento (Rock-Fill) no leito do rio, com seção trapezoidal de 4,0 m de largura, taludes de 1:1,5 (V:H) e topo fixado na cota 113,00 m, a partir daí em direção às ombreiras está previsto a execução de filtro de pé.

Para a transição, entre o dreno de areia e esta proteção de enrocamento, está prevista a colocação de uma camada de transição composta de uma brita e uma camada de bica corrida, semelhante ao material usado na proteção do talude de jusante, com espessura de 0,50 m.

As granulometrias da brita e do material do enrocamento do Rock-Fill são mostradas a seguir nos **Quadros 4.8 e 4.9**.

Quadro 4.8 - Granulometria da Brita da Transição do Rock-Fill

PENEIRA (mm)	FAIXA GRANULOMÉTRICA (% passando)	
2" (50,8)	100	
1" (25,4)	40 – 90	
3⁄4" (19,0)	30 – 72	
1/2" (12,7)	18 – 50	
3/8" (9,2)	12 – 34	
Nº 4	0 – 15	
Nº 10	-	

Quadro 4.9 - Granulometria do Enrocamento do Rock-Fill

PENEIRA (mm)	FAIXA GRANULOMÉTRICA (% passando)	
1000	100	
700	80 – 98	
500	46 – 98	
300	31 – 93	
200	22 – 88	
100	10 – 64	
2" (50,8)	0 – 26	
1" (25,4)	0 – 10	
³ ⁄ ₄ " (19,0)	0 – 6	
½" (12,7)	-	
3/8" (9,5)	-	

Na **Figura 4.8** são apresentadas as granulometrias da areia grossa, brita e do material do enrocamento do Rock-Fill.

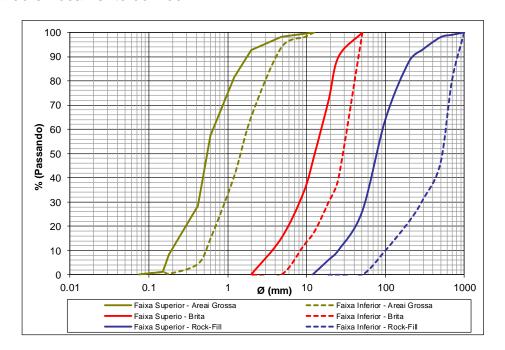


Figura 4.8 – Granulometria da Areia Grossa, Brita e Enrocamento do Rock-Fill

Na figura acima são apresentadas as faixas granulométricas dos materiais que formam o sistema de drenagem interna.

A granulometria dos materiais foi definida com base nos critérios de Terzaghi, por forma a constituírem uma defesa contra a erosão interna do maciço da barragem e da fundação e, em simultâneo, funcionarem como dreno, conforme a **Figura 4.9** a seguir e os cálculos dos critérios de Terzaghi.

Figura 4.9 – Granulometria do Solo da Jazida 10, Areia Grossa e Brita

Os materiais solo/areia atendem aos seguintes critérios:

$$\frac{D_{15(areia)}}{D_{85(solo)}} < 4 :: \frac{0,40mm}{9,20mm} = 0,04 < 4 \Rightarrow 0K!$$

$$\frac{D_{15(areia)}}{D_{15(solo)}} > 5 \div \frac{0,40mm}{0,03mm} = 13,33 > 5 \Rightarrow OK!$$

Os materiais areia/brita atendem aos seguintes critérios:

$$\frac{D_{15(brita)}}{D_{85(areia)}} < 4 :: \frac{7,00mm}{2,30mm} = 3,04 < 4 \Rightarrow OK!$$

$$\frac{D_{15(brita)}}{D_{15(areia)}} > 5 : \frac{7,00mm}{0,40mm} = 17,5 > 5 \Rightarrow OK!$$

4.3 - VERTEDOURO

O vertedouro da Barragem Frecheirinha (alternativa 2 escolhida e detalhada, como foi dito no item 4.1.2 deste relatório) foi projetado com base nas informações dos estudos hidrológicos e, principalmente, nas condições geotécnicas do subsolo do local, o qual estará localizado na ombreira direita, afastado cerca de 470m do maciço da barragem.

O eixo longitudinal do canal vertedouro possui uma extensão de 509,49 m, estando estaqueado de 20 em 20 metros. As estacas estão nomeadas em metros.

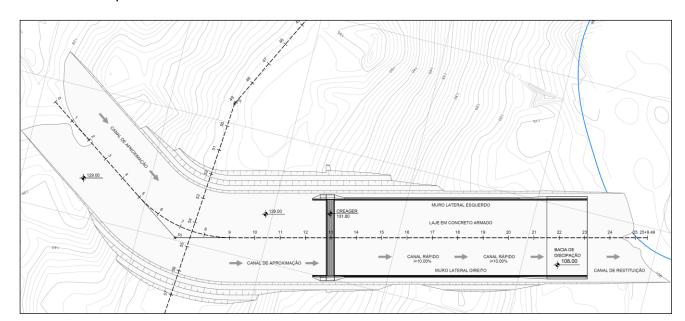


Figura 4.10 – Vista Superior do Vertedouro

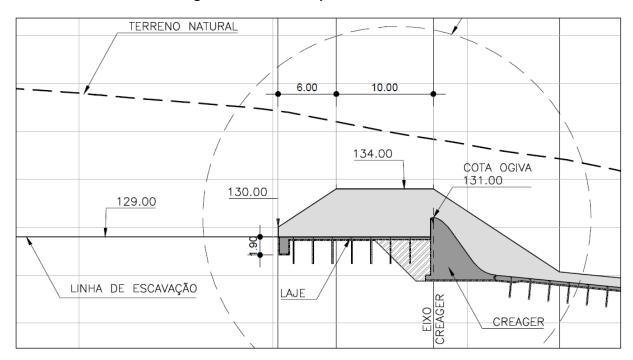


Figura 4.11 – Vista Lateral do Perfil do Vertedouro Tipo Creager

41

O canal de aproximação do vertedouro será escavado na cota 129,00 m, com largura de base de 60,00 m, com muro vertical na cota 134,00 m (mesma cota do coroamento da barragem) no entorno do creager que tem crista na cota 131,00 m. O

42

ENGENHARIA

canal de restituição do vertedouro preserva a mesma largura, é revestido com laje em concreto armado e muro que tem altura variável até o final.

Nos **desenhos 06 a 08 do Tomo 2, Volume I**, pode ser observado os detalhes das estruturas e das proteções da bacia de amortecimento e do canal de restituição.

4.4 - TOMADA D'ÁGUA E EQUIPAMENTOS HIDROMECÂNICOS

A estrutura da tomada d'água da barragem Frecheirinha foi concebida tanto com a finalidade de permitir a adução da vazão regularizada de 0,655 m³/s ou 655 l/s (com 90% de garantia), como possibilitar o esvaziamento rápido do reservatório em caráter emergencial no tempo médio aproximado de **133 dias (cerca de 04 meses)**. No item 5 deste relatório, apresenta-se a memória de cálculo da tomada d'água.

A tomada d'água será implantada na estaca 29+10,00 m do eixo barrável na ombreira direita, terá extensão de 115,00 m e será constituída de uma galeria tubular de diâmetro Ø=1200mm em aço ASTM A-36. O eixo da galeria tubular ficará na cota 114,36 m. O corpo do tubo será envolvido em concreto estrutural (envelopamento).

No lado de montante, o extremo da tubulação com o registro de gaveta será protegido por uma caixa de concreto armado, com grade de barra de ferro chato de malha #100mm x 500mm. No lado de jusante será construída uma casa de comando da válvula dispersora, associada à válvula borboleta montada imediatamente a montante, uma estrutura de concreto armado para abrigo dos equipamentos hidromecânicos e uma bacia de dissipação da energia cinética com fundo abaixo da cota inicial do canal de restituição da tomada d'água.

As escavações obrigatórias atingirão a cota 113,28 m que permite a implantação da tomada d'água de acordo com as seções transversais projetadas.

Após a bacia de dissipação no início do trecho do canal de restituição, está previsto uma proteção com enrocamento com a finalidade de evitar erosões provocadas pelo fluxo das águas efluentes da tomada d'água.

O arranjo do sistema de descarga d'água, seus elementos constituintes e detalhes dos aspectos das obras civis e dos equipamentos hidromecânicos são apresentados no **Tomo 2 - Desenhos, Volume I**.

43

ENGENHARIA

4.5 - TRATAMENTO DA FUNDAÇÃO

Em função dos resultados das sondagens e dos ensaios de perda de água realizados no maciço rochoso da fundação, foi previsto a realização de uma cortina de injeção ao longo da barragem, da tomada d'água e do vertedouro.

Os furos localizados no eixo da barragem de terra terão uma profundidade de 12,00 m, a partir da linha de rocha e será executada no trecho da Barragem. Será executado inicialmente os furos primários denominados de exploratórios, espaçados a cada 12,0 m. Os furos exploratórios serão executados com sonda rotativa diâmetro ϕ nx (75,3 mm) e em todos os furos primários (exploratórios) serão executados ensaios de perda d'água de cinco estágios, em segmentos de 3,0 em 3,0 metros.

Em seguida serão executados os furos secundários espaçados a cada 6,0 m e na sequência serão injetados os furos terciários, espaçados a cada 3,00 m, que serão executados com equipamento roto-percussor com (rock-drill) de diâmetro de 3" (76,2 mm). Caso se qualquer um dos furos terciários apresentar um consumo de calda superior a 20 kg/m de cimento, serão executados dois furos de ordem superior ao lado deste a meia distância entre os furos adjacente e assim sucessivamente.

4.6 - INTERFERÊNCIAS COM OBRAS EXISTENTES

As interferências existentes no Projeto da Barragem Frecheirinha são as redes de transmissão de energia elétrica da CHESF que foram identificadas e cadastradas topograficamente para avaliar se as fundações das bases destas torres situam-se em cotas inferiores aos níveis operacionais do reservatório. Diante da análise das cotas das bases e níveis operacionais (cheias milenar e decamilenar), verificou-se que nenhuma torre será atingida, conforme o **desenho 02 do Tomo 2, Volume I**.

Na área da bacia hidráulica também foram identificadas estradas vicinais locais, edificações e propriedades que são apresentadas nos relatórios de Levantamento Cadastral e Plano de Reassentamento da barragem.

4.7 - DESENHOS

Os desenhos do Projeto Executivo da Barragem Frecheirinha são apresentados no **Tomo 2, Volume I**.

tpfe.com.br

43

5 - MEMÓRIA DE CÁLCULO

45

ENGENHARIA

5 - MEMÓRIA DE CÁLCULO

O objetivo deste capítulo é apresentar a Memória de Cálculo de todos os segmentos do Projeto Executivo da Barragem Frecheirinha. A referida memória é desenvolvida a seguir abordando os seguintes tópicos:

- Cálculo da Folga;
- Cálculo da Cota de Coroamento;
- Cálculo da Largura do Coroamento;
- Escolha da Inclinação dos Taludes;
- Dimensionamento do Rip-rap;
- Determinação da Linha Freática;
- Dimensionamento do Filtro Vertical;
- Dimensionamento do Tapete Horizontal;
- Especificações dos Materiais do Enrocamento de Pé;
- Análise da Estabilidade;
- Cota do Volume Morto;
- Tomada d'Água;
- Dimensionamento do Vertedouro;
- Quantitativos do Projeto.

5.1 - CÁLCULO DA FOLGA

Na determinação da folga da Barragem Frecheirinha foram levados em consideração diversos parâmetros, abordados sempre de forma conservativa, no sentido de preservar a segurança global da barragem, tais como:

 A ação do vento sobre o reservatório, que provoca sobreelevações temporárias do nível de água e ondulações em função da magnitude, duração, orientação e distribuição sazonal;

tpfe.com.br

45

- A ocorrência simultânea de ventos e cheias de projeto;
- A velocidade do vento sobre o reservatório e a altura das ondas geradas, as quais são condicionadas pela localização da barragem e pela topografia da bacia de acumulação - fatores considerados na avaliação através do fetch efetivo;
- O espraiamento da onda sobre a barragem, que depende da inclinação e da rugosidade da superfície de montante;
- O recalque da barragem e da fundação, sendo que no caso da Barragem Frecheirinha, como serão removidos os materiais superficiais de características mecânicas inferiores, o maciço de concreto será apoiado em maciço rochoso competente, o que fará com os recalques sejam de pequeno significado.

Considerando essas premissas, a determinação da folga foi realizada de acordo com os cálculos a seguir.

A folga da barragem é a diferença de cota entre o coroamento e o nível máximo das águas. A folga é dada pela expressão:

$$f = 0.75h + \frac{V^2}{2g}$$

Onde h é a altura da onda formada pela ação dos ventos sobre o espelho d'água do lago, enquanto h é dado por:

$$h = 0.75 + 0.34F^{1/2} - 0.26F^{1/4}(m)$$
 para F<18Km

$$h = 0.34F^{1/2}(m)$$
 para F >18Km

Onde:

F = distância máxima (em km) em linha reta entre qualquer extremidade do lago e um ponto qualquer sobre o barramento (fecht).

V = Velocidade da onda em m/s dado pela fórmula:

$$V = 1.5 + 2h(m/s)$$

Para o lago da Barragem Frecheirinha tem-se F = 5,00 km, logo:

1. Cálculo da altura de onda:

$$F = 5.0 \text{ km} \rightarrow h = 0.75 + 0.34 * (5.0)^{1/2} - 0.26 * (5.0)^{1/4}$$

$$h = 1,14 \text{ m} \rightarrow h = 1,20 \text{ m} \text{ (adotado)}$$

2. Cálculo da velocidade da onda:

$$V = 1.5 + 2 * (1.20) \rightarrow V = 3.90 \text{ m/s}$$

3. Cálculo da folga:

$$f = 0.75 * (1.20) + (3.90)^2 / (2 * 9.81)$$

$$f = 1,68 \text{ m}$$

5.2 - CÁLCULO DA COTA DO COROAMENTO

A cota do Coroamento da Barragem é dada pela expressão:

$$C_C = C_S + L + F$$

Onde:

 C_C = Cota do Coroamento

 C_S = Cota da Soleira = 131,00 m

L1.000 = Lâmina vertente na cheia milenar = 0,92 m

L10.000 = Lâmina vertente na cheia milenar = 1,11 m

f = 1,68 m (folga)

Definição da cota do coroamento – verificação pela cheia milenar.

$$C_c = C_s + L_{1.000} + f$$

$$C_c = 131,00 + 0,92 + 1,68 \rightarrow C_c = 133,60 \text{ m}$$

 $C_c = 134,00 \text{ m}$ (cota do coroamento adotado)

Verificação para a cheia decamilenar.

$$C_C - C_{10,000} =$$

Onde:

 $C_{10.000}$ = Cota da cheia decamilenar = 132,11 m.

$$C_C - C_{10,000} = 134,00 - 132,11 = 1,89 \text{ m} > 0,50 \text{ m}$$
 (OK!)

Como a cota do coroamento menos a cota do $NA_{decamilenar}$ é maior do que 0,50 m, logo atende aos critérios de segurança adotados.

5.3 - CÁLCULO DA LARGURA DO COROAMENTO

Adotando-se a fórmula de Preece à seção de terra de maior altura tem-se:

$$L_C = 1,10\sqrt{H_b} + 0,9(m)$$

Onde:

 L_C = Largura da barragem (m);

 $H_b = Altura da barragem (m).$

Para a seção da Estaca 16+0.00 tem-se $H_b = 26.30$ m:

$$L_c = 1.10 * (26.30)^{1/2} + 0.90$$

 $L_c = 6,54 \text{ m}$

Adotou-se por questões construtivas $L_c = 7,00 \text{ m}$.

Para os três diques de fechamento, devido às suas pequenas alturas, foi adotado a largura do coroamento $L_{\text{c}} = 4{,}00 \text{ m}.$

5.4 - ESCOLHA DA INCLINAÇÃO DOS TALUDES

A fixação dos taludes foi resultado de análise da estabilidade. Entretanto foi necessário se fazer uma escolha inicial para em seguida se fazer a análise de estabilidade.

O Bureau of Reclamation sugere as inclinações de taludes, reproduzidas no **Quadro 5.1**:

Quadro 5.1 – Inclinação Dos Taludes – Bureau Of Reclamation

Caso	Sujeito a esvaziamento rápido	Classificação dos solos	Montante	Jusante
		GW, GP, SW, SP	Permeável,	não adequado
^	NÃO	GC, GM, SC, SM	2.5:1	2:1
Α	NAO	CL, ML	3:1	2,5:1
		CH, MH	3,5:1	2,5:1
		GW, GP, SW, SP	Permeável,	não adequado
В	CIM	GC, GM, SC, SM	3:1	2:1
В	B SIM	CL, ML	3,5:1	2,5:1
		CH, MH	4:1	2,5:1

Terzaghi apresentou, para efeito de Projeto, as inclinações aconselháveis que são mostrados no **Quadro 5.2**:

Quadro 5.2 - Inclinação dos taludes - Terzaghi

Tipo do Motoriol	Taludes	
Tipo de Material	Montante	Jusante
Seção Homogênea – Solo bem graduado	1:2,5	1:2
Seção Homogênea – Silte grosso	1:3	1:2,5
Seção Homogênea – Argila ou argila siltosa, altura menor que 15m	1:2,5	1:2
Seção Homogênea – Argila ou argila siltosa, altura maior que 15m	1:3	1:2,5
Areia ou Pedregulho e Areia com núcleo de argila	1:3	1:2,5
Areia ou Pedregulho com cortina de concreto armado	1:2,5	1:2

O engenheiro Paulo Teixeira da Cruz em sua obra 100 Barragens Brasileiras sugere os seguintes taludes preliminares que são mostrados no **Quadro 5.3**:

Quadro 5.3 - Inclinação dos taludes - Paulo T. Cruz

Tipo de material	Montante	Jusante
Solos Compactados	2:5(H): 1,0(V) 3,0(H): 1,0(V)	2:0(H) : 1,0(V)
Solos Compactados Argilosos	2:0(H) : 1,0(V) 3,0(H) : 1,0(V)	2:0(H) : 1,0(V) 2,5(H) : 1,0(V)
Solos Compactados Siltosos	3,5(H): 1,0(V)	3,0(H): 1,0(V)
Enrocamentos	1:3(H) : 1,0(V) 1,6(H) : 1,0(V)	1:3(H): 1,0(V) 1,6(H): 1,0(V)

Portanto, analisando as tabelas juntamente com os materiais que serão usados na construção, adotou-se para análise os taludes de montante com inclinação de 1:2,5

(V:H) e jusante com inclinação de 1:2,0 (V:H), usando um multiplicador da aceleração da gravidade de 1,05 para verificação da análise sísmica.

Os solos das jazidas pesquisadas e estudadas que formarão o maciço são compostas basicamente de solos SC (areia argilosa), portanto, analisando as tabelas juntamente com os materiais que serão usados na construção adotou-se para a barragem de terra o talude de montante 2,5:1,0 (H:V) e talude de jusante 2,0:1,0 (H:V), esta última inclinação será adotada nos taludes das seções dos diques de terra.

5.5 - DIMENSIONAMENTO DA PROTEÇÃO DE MONTANTE (RIP-RAP E TRANSIÇÃO)

Adotando a fórmula recomendado pelo Tennessee Valley Authority (TVA)

tem-se:

 $e = CV^2$

Onde:

e = Espessura do rip-rap (m);

C = Coeficiente, função da inclinação do talude e da densidade da rocha;

V = Velocidade da onda (m/s).

Tem-se:

V = 3.90 m/s

$$C = 0.030m$$

$$e = 0.030 * 3.90^2 \rightarrow e = 0.46 \text{ m} \rightarrow \text{Será adotado } e = 0.70 m.$$

 a) Os blocos empregados na construção do rip-rap devem ter no mínimo 50% de pedras com peso igual a:

$$P_{50\%} = 0.52 \cdot \gamma \cdot e^3$$

Onde:

 $P_{50\%}$ = Peso do bloco de rocha que compõem 50% do rip-rap (tf);

 γ =Peso específico da rocha = 2,50 tf/m³;

e =Espessura do rip-rap em (m).

Portanto tem-se:

$$P_{50\%} = 0.52 \times 2.5 \times 0.70^3 = 0.45tf$$

 b) Os blocos de enrocamento do rip-rap devem ter no mínimo 50% de pedras com o diâmetro igual a:

$$D_{50\%} = \left(\frac{P_{50\%}}{0.75\gamma}\right)^{1/3}$$

Onde:

 $D_{50\%}$ =diâmetro do bloco de rocha que compõem 50% do rip-rap

Logo:

$$D_{50\%} = \left(\frac{0.45}{0.75 \times 2.50}\right)^{1/3} \cdot D_{50\%} = 0.62m$$

c) O diâmetro e o peso do bloco mínimo:

$$\begin{split} P_{\min} &= 0.25 P_{50\%} = 0.25 \times 0.45 :: P_{\min} = 0.11 tf \\ D_{\min} &= \left(\frac{P_{\min}}{0.75 \gamma}\right)^{1/3} = \left(\frac{0.11}{0.75 \times 2.50}\right)^{1/3} :: D_{\min} = 0.39 mm \end{split}$$

d) O diâmetro e o peso máximo do bloco.

$$P_{m\acute{a}x} = 4P_{50\%} = 4 \times 0.45 : P_{m\acute{a}x} = 1.80tf$$

$$D_{m\acute{a}x} = \left(\frac{P_{m\acute{a}x}}{0.75\gamma}\right)^{1/3} = \left(\frac{1.80}{0.75 \times 2.50}\right)^{1/3} \therefore D_{m\acute{a}x} = 0.99m$$

Como $D_{m\acute{a}x}$ calculado foi maior do que a espessura, será adotado $D_{m\acute{a}x}=e=0,70m$. Assim sendo:

$$P_{m\acute{a}x} = 0.75 \gamma D_{m\acute{a}x}^3 = 0.75 \times 2.50 \times (0.70)^3 : P_{m\acute{a}x} = 0.64 tf$$

O rip-rap será assente sobre uma camada de transição com 0,30 m de espessura obtida de produto de britagem, atendendo aos seguintes requisitos:

Material filtrante x Solo Compactado

$$(D_{15})_{filtro} \le 5 \times (D_{85})_{solo}$$

Material filtrante x Rip-rap

Bourdeaux (1979) recomenda para altura de onda variando de 0 e 1,2 m deve-se ter: $D_{85(filtro)} > 5,1cm$.

Apresentar curvas granulométricas aproximadamente paralelas.

As curvas granulométricas e a verificação dos critérios de Terzaghi destes materiais são apresentadas no capítulo 4 deste relatório.

5.6 - ESTUDOS DE PERCOLAÇÃO PELA BARRAGEM E FUNDAÇÃO

Nessa fase de Projeto Básico, cabe o uso de parâmetros médios de resistência, coesão, ângulo de atrito interno e coeficientes de permeabilidades dos diversos materiais, obtidos de pesquisas reconhecidas mundialmente por Órgãos ou Instituições que cuidam de projetos e construções de barragens. Para a barragem Frecheirinha adotou-se os estudos realizados pelo Bureal Of Reclamation, dos Estados Unidos da América do Norte, constante na 3ª edição de 1987 do Livro Design Of Small Dams, páginas 96 a 98.

5.6.1 - VAZÃO PELO MACIÇO

Para a definição da vazão pelo maciço, o coeficiente de permeabilidade do Solo tipo SC, conforme página 98, Figura 5-14, os Estudos de Casa Grande e Fadum, de 1940, adotado nesse Projeto Básico foi de: $K_v = 10^{-6} \, cm/s = 10^{-8} \, m/s$.

As vazões que percolam, pelo maciço da Barragem e são coletadas pelo filtro vertical, são limitadas superiormente pela linha freática cujo posicionamento é indefinido. Para contornar esse problema foi associada a linha freática à parábola de KOZENY que corresponde à percolação de água através de um solo, com coeficiente de permeabilidade K, apoiado sobre uma camada impermeável K=0 e desaguando num dreno $K=\infty$. A camada impermeável será a base da Barragem.

Colocando-se um sistema de eixos cartesiano x e y, com y coincidindo com o paramento de montante do filtro vertical e x com a base da Barragem, ou seja, fundo do tapete horizontal. A origem desse sistema cartesiano será o ponto de interseção

do paramento de montante do filtro vertical com a base do tapete horizontal, como pode ser visto na figura abaixo:

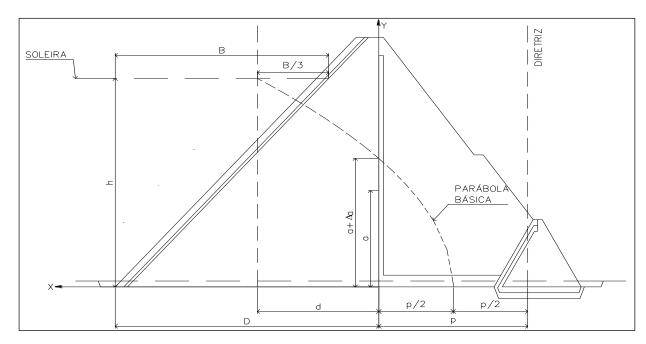


Figura 5.1 - Parábola de Kozeny - seção transformada

Os estudos de KOZENY verificaram que o fluxo no maciço é limitado por uma curva parabólica traçada no sistema cartesiano $x \cdot y$ pela linha pontilhada com foco na origem dos eixos e equação da parábola dada pela seguinte expressão:

$$\sqrt{x^2 + y^2} = x + p$$

Onde:

(x,y) = ponto da curva

p = o dobro da distância do foco ao vértice.

Sabendo-se que o meio poroso é anisotrópico com relação à permeabilidade e admitindo:

$$\frac{K_y}{K_x} = \frac{1}{9}$$

Para uso desta equação é necessário fazer a transformação de uma das ordenadas.

Fazendo-se a transformação no eixo x, tem-se:

$$X_t = x \cdot \sqrt{\frac{K_y}{K_x}}$$

Onde:

 $X_t = \text{Abscissa transformada}$

X = Abscissa real

 K_x = Permeabilidade na direção horizontal

 K_v = Permeabilidade na direção vertical

Sendo assim:

$$X_t = d_t = d \cdot \sqrt{\frac{1}{9}} = \frac{d}{3}$$

Portanto a equação abaixo:

$$P = \sqrt{x^2 + y^2} - x$$

Se transformada em:

$$P = \sqrt{\left(\frac{x}{3}\right)^2 + y^2} - \frac{x}{3}$$

O valor de P pode ser calculado aplicando-se a equação ao ponto (d, h).

$$P = \sqrt{\left(\frac{d}{3}\right)^2 + h^2} - \frac{d}{3}$$

Para d = 11,76m e h = 24,39m, têm-se P = 20,78m.

Obtido o valor de *P* obtém-se a vazão de percolação pelo maciço que é dada pela expressão:

$$Q_M = K \cdot P$$

Com:
$$K = \sqrt{K_x \cdot K_y} = 3 \cdot K_y$$
.

Conforme apresentado no início deste item:

$$K_{v} = 10^{-6} \, cm / s = 10^{-8} \, m / s.$$

$$Q_M = 6.23 \times 10^{-7} m^3/s/m$$
 (vazão no maciço).

5.6.2 - VAZÃO PELA FUNDAÇÃO

Na fundação as linhas de fluxo são predominantemente horizontais, conforme Milton Vargas em seu livro Introdução à Mecânica dos Solos, Editora McGraw-Hill do Brasil, capítulo VI – Percolação D'água nos Solos, página 155.

Portanto, será adotada para o cálculo da vazão pela fundação a permeabilidade kf = kh, onde kh = 5.10⁻⁶ cm/s.

O cálculo da vazão específica de percolação pela fundação pode ser obtido considerando as fórmulas aproximadas de Terzaghi:

$$q = \frac{K_f \cdot h}{0.88 + \frac{B}{Z}}$$
, quando B>2z

$$q = \frac{K_f \cdot h}{2} \cdot \sqrt[3]{\frac{2z}{B} - 1}$$
 , quando B<2z

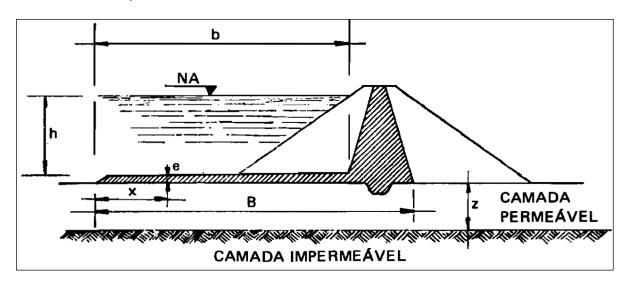


Figura 5.2 - Esquema de Fluxo Pela Fundação

Na prática as duas fórmulas podem ser substituídas pela fórmula única:

$$q = \lambda \cdot K_f \cdot h$$

Onde:

q = Vazão por metro

 K_f = Coeficiente de permeabilidade

h = Carga hidráulica (m) igual a 24,39m

 $\lambda =$ Coeficiente dado em função de B/Z

Z =Espessura do maciço permeável (Z = 20,00m)

B = Extensão da zona impermeável de montante

 λ é obtido do gráfico abaixo

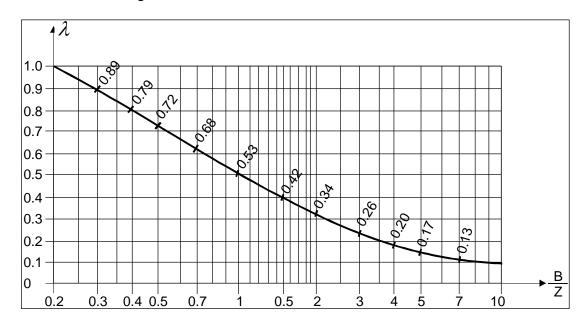


Figura 5.3 – Valores λ em função de B/Z

$$K_f = 5 \times 10^{-8} m/s$$

Para: B = 120,00m

$$\frac{B}{Z} = \frac{120,00}{20} = 6,0$$

 $\lambda = 0.15 \longrightarrow (obtido\ do\ gr\'{a}fico)$

$$q_f = 0.15 \times 5.0 \times 10^{-8} \times 24.39$$

$$q_f = 1.83 \times 10^{-7} m^3/s/m$$

5.6.3 - VAZÃO TOTAL PELO MACIÇO E PELA FUNDAÇÃO:

$$Qm + q_f = (6.23 + 1.83)x \cdot 10^{-7}$$

$$Qm + q_f = 8,06 \times 10^{-7} \, m^3/s/m$$

5.7 - DIMENSIONAMENTO DO FILTRO VERTICAL

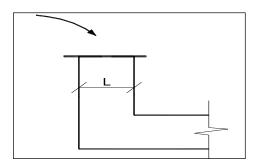


Figura 5.4 - Esquema do Filtro Vertical

$$Q = K \cdot i \cdot A$$
$$A = L \times 1,0m$$
$$i = 1.0$$

Como o filtro vertical será construído com areia grossa, o seu coeficiente de permeabilidade adotado foi $K=1.0\times 10^{-2} cm/s$: $(K=1.0\times 10^{-4} m/s)$. A vazão pelo maciço é de $Q_M=6.23\times 10^{-7} m^3/s/m$.

Logo:

$$Q = K \cdot i \cdot L$$

$$L = \frac{Q}{K \cdot i} = \frac{6,23 \times 10^{-7}}{1.0 \times 10^{-4} \times 1.0} : L = 0,0062m$$

Adotou-se L=1,0m por questões construtivas, principalmente porque indicase a construção do filtro através da escavação de camada de solo já executada.

O material do filtro vertical (areia grossa) atende aos seguintes requisitos de Bertram (1940):

$$\frac{D_{15(areia)}}{D_{85(solo)}} < 4 :: \frac{0,40mm}{9,20mm} = 0,04 < 4 \Rightarrow 0K!$$

$$\frac{D_{15(areia)}}{D_{15(solo)}} > 5 :: \frac{0,40mm}{0,03mm} = 13,33 > 5 \Rightarrow 0K!$$

As curvas granulométricas são apresentadas nas figuras do item 4 deste relatório.

5.8 - DIMENSIONAMENTO DO FILTRO HORIZONTAL

O filtro horizontal foi dimensionado com base no Livro Seepage, Drainage, and Flow Nets (3ª Ed.), do autor Harry R. Cedergren. O cálculo da lâmina foi efetuado em uma seção no final do tapete, na entrada do rockfill.

Considerando um filtro executado plenamente com areia grossa, limpa, de boa qualidade, coeficiente de permeabilidade $k=10^{-4}m/s$ e que sua espessura mínima não poderá estar completamente saturada. Então o dimensionamento será a pesquisa dessa espessura mínima que garante a não saturação devido as águas que chegam do maciço e da fundação.

A vazão nas seções finais do filtro é de $8,06 \times 10^{-7} \, m^3/s/m$, resultante da soma das vazões pelo maciço e pela fundação, conforme item anterior.

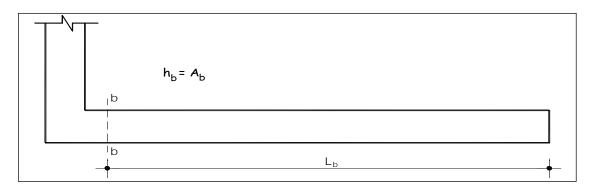


Figura 5.5 - Esquema do Filtro Horizontal

 $L_b = 41,00m$

$$K_b = \frac{Q}{i \cdot A_b}$$

$$h_b = A_A$$

$$i = \frac{h_b}{L_b}$$

$$K_b = \frac{Q_b}{\left(\frac{h_b}{L_b}\right) \cdot A_b} = \frac{Q_b \cdot L_b}{{h_b}^2}$$

$${h_b}^2 = \frac{Q_b \cdot L_b}{K_b} \times C$$

onde C=10 é o coeficiente de segurança recomendado pelo Dr. Paulo Cruz.

Substituindo os valores na equação anterior, tem-se:

$$h_b = 1.82m >> 1$$

Como o valor h_b encontrado acima foi bem superior a 1,0m, não se optou pela solução com tapete horizontal drenante composto apenas por areia grossa.

Diante desta situação foi adotada uma solução com dreno tipo 'sanduíche', conforme recomendações do Eng.º Guy H. R. M. Bourdeaux contidas no livro Projeto de Barragens de Terra e Enrocamento. As camadas adotadas para o dreno tipo 'sanduíche', após algumas verificações de suas espessuras, foram adotadas de acordo com a seguinte configuração:

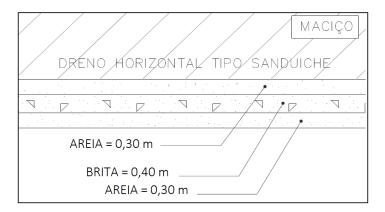


Figura 5.6 - Detalhe do Dreno Horizontal Tipo Sanduíche

Foi considerada a permeabilidade da brita igual a 1,00 m/s (K_{BRITA}=1,00m/s), logo a permeabilidade média dreno 'sanduíche' é a seguinte:

$$K_{Dreno_Sand} = (0.30xK_{Areia} + 0.40xK_{Brita} + 0.30xK_{Areia})/(0.30 + 0.40 + 0.30)$$

$$K_{Dreno_Sand} = (0.30x10^{-4} + 0.40x1.00 + 0.30x10^{-4})/(1.00)$$

Com isso, a capacidade de vazão do dreno 'sanduíche' é igual a:

$$Q_b = \frac{K_b \times h_b^2}{L_b \times C'} = \frac{0.40 \times 1.00^2}{41.00 \times 10} = 9.76 \times 10^{-4} m^3 / s(\text{Ok!!})$$

valor bem superior ao encontrado para a vazão total do maciço e da fundação.

A areia grossa a ser utilizada no dreno horizontal tipo 'sanduíche' atende os seguintes requisitos de Bertram (1940).

$$\frac{D_{15(areia)}}{D_{85(solo)}} < 4 :: \frac{0.40mm}{9.20mm} = 0.04 < 4 \Rightarrow OK!$$

$$\frac{D_{15(areia)}}{D_{15(solo)}} > 5 :: \frac{0.40mm}{0.03mm} = 13.33 > 5 \Rightarrow 0K!$$

A brita utilizada neste dreno tem as mesmas características granulométricas da brita da transição do enrocamento de pé, como mostra o item a seguir.

As curvas granulométricas são apresentadas nas figuras do item 4 deste relatório.

Foi adotado 1,00m de espessura para o filtro drenante.

O material do brita/areia atende aos seguintes critérios:

$$\frac{D_{15(brita)}}{D_{85(areia)}} < 4 \div \frac{7,00mm}{2,30mm} = 3,04 < 4 \Rightarrow 0K!$$

$$\frac{D_{15(brita)}}{D_{15(areia)}} > 5 \div \frac{7,00mm}{0,40mm} = 17,50 > 5 \Rightarrow OK!$$

O dimensionamento das transições foi desenvolvido em atendimento aos critérios de filtro e transições, conforme mostrado no capítulo 4 deste relatório.

As curvas granulométricas de todos os materiais empregados na barragem são apresentadas no capítulo 4 deste relatório.

5.9 - ANÁLISE DE ESTABILIDADE DA BARRAGEM DE TERRA

A análise de estabilidade da Barragem de Terra foi feita utilizando-se Método de Bishop Modificado e o programa Geo-Slope/W.

61

ENGENHARIA

A geometria da barragem de terra da Barragem Frecheirinha foi avaliada de

duas maneiras, a saber: a análise de estabilidade estática e sísmica.

A análise da estabilidade estática foi realizada recorrendo-se ao método de

equilíbrio limite, proposto por Bishop implementado automaticamente através do

programa de cálculo SLOPE/W.

Os cálculos da estabilidade foram realizados sobre a seção mais condicionante

no que concerne a estabilidade da barragem, ou seja, a seção de maior altura, tendo

sido analisado as seguintes situações.

Final de Construção – taludes de montante e jusante;

Reservatório Cheio (a longo prazo) – talude de jusante;

• Rebaixamento Rápido – talude de montante.

A análise da estabilidade sísmica foi efetuada através de um método pseudo-

estático recorrendo-se ao Método de Bishop Simplificado, também implementado pelo

programa SLOPE/W.

No que diz respeito à caracterização da ação sísmica, foi adotado, para a

situação de final de construção, regime permanente e rebaixamento rápido, um

coeficiente sísmico de 0,05.

Quanto à obtenção das pressões neutras adotaram-se os seguintes

procedimentos:

a) Adoção do Coeficiente Ru

Para a situação de final de construção adotou-se o coeficiente Ru. Este

coeficiente é definido como a relação entre a pressão intersticial da água num

determinado ponto com a tensão vertical nesse ponto através da expressão $R_u = U/\sigma_1$.

Esse coeficiente é função do tipo do material. Para materiais de elevada

permeabilidade nos quais a dissipação das pressões intersticiais é quase instantânea,

o coeficiente toma valores próximos de zero. No limite, o coeficiente Ru pode atingir

0,50 caso se esteja na presença de materiais saturados de baixa permeabilidade.

tpfe.com.br

61

b) Definição da Linha Piezométrica

Para os casos de regime permanente e rebaixamento rápido, as pressões neutras foram obtidas a partir do traçado da linha piezométrica cujos pontos determinou-se associando a linha freática à parábola de Kozeny teórica fazendo as correções de contorno.

A anisotropia do solo foi contemplada considerando uma relação igual a 9 entre os coeficientes de permeabilidade horizontal/vertical.

c) Parâmetros de Resistência dos Materiais

O Quadro a seguir, indica os valores dos Parâmetros Geotécnicos adotados para a análise da estabilidade da barragem.

Material γ (kN/m³) C (kPa) φ(graus) R_{u} Rip-Rap 0,00 40° 0,00 21,5 Macico/Cut-Off 18,4 20,0 27,00 0,10 35° Filtro/Tapete 19,5 0,00 0,00 Rock-Fill 40° 21,5 0,00 0,00 Aluvião 19,5 0,00 30° 0,10 Topo Rochoso

Quadro 5.4 - Parâmetros Geotécnicos Adotados

5.9.1 - MÉTODO DE BISHOP SIMPLIFICADO

Em 1955 Bishop generalizou o método das fatias para levar em conta o efeito dos empuxos e cisalhamento ao longo das faces laterais das fatias.

Nesse método é feito, também, o equilíbrio dos momentos em torno do centro do círculo de ruptura.

O coeficiente de segurança é dado pela expressão:

$$S = \frac{1}{\sum \Delta P sen\alpha} \times \Sigma \cdot C' \cdot \Delta X + tg\varphi' \cdot \Delta P \left(1 - \overline{B}\right) \cdot \frac{sec \alpha}{1 + \frac{tg\varphi' \cdot tg\alpha}{S_0}}$$

Onde:

 $C' = \cos \tilde{a}o \text{ efetiva}.$

 φ' = angulo de atrito interno efetivo.

63

ENGENHARIA

5.9.2 - PROGRAMA SLOPE/W

O SLOPE/W é um programa computacional que utiliza a Teoria do Estado do

Limite de Equilíbrio para calcular o fator de segurança dos taludes de solos e de

rochas.

Este Software possui a capacidade de determinar o fator de segurança dos

problemas de estabilidade de taludes, por uma variedade de métodos a saber:

Feldenius, Bishop Simplificado, Janbu Simplificado, Spencer, Mongenstern-Price,

Corps of Engeneers, GLE (Limite de Equilíbrio Geral) e Elementos Finitos.

Ele pode ser usado para modelar uma ampla variação de geometria de taludes

e estratigrafia tal como múltiplos tipos de solos, parcialmente submerso em água,

várias espessuras e substrato descontinuo camadas de solos impermeáveis e secos

ou saturados, tensões de ruptura. As tensões de quebra podem ser modeladas

especificando a linha de tensão de ruptura ou o máximo ângulo de inclinação da

superfície de escorregamento.

Este software usa uma grade para os centros de rotação e um campo para os

raios, para modelos de superfície de escorregamento circulares ou compostos.

O SLOPE/W possui algumas opções para especificar a pressão neutra, a

saber: Coeficiente da pressão neutra; Superfície Piezométrica; Parâmetros de

Pressão Neutra em Locais Específicos; Isolinhas de Pressão Neutra.

5.9.3 - RESULTADOS OBTIDOS

Após o processamento do programa SLOPE/W foram obtidos os seguintes

resultados:

a) Análise da Estabilidade Estática

Os valores dos fatores de segurança obtidos na análise de estabilidade estática

são mostrados no quadro a seguir:

tpfe.com.br

63

CNPJ 12285.441/0001-66

Quadro 5.5 - Fatores de Segurança da Análise de Estabilidade Estática

Simulação	C.S. Mínimo	Fator de Segurança
Final de Construção – Talude de Montante	1,3	1,91
Final de Construção – Talude de Jusante	1,3	1,70
Reservatório Cheio – Talude de Jusante	1,5	1,54
Rebaixamento Rápido – Talude de Montante	1,1	1,24

Quanto aos coeficientes de segurança resultantes da análise de estabilidade, verifica-se que estão todos acima dos valores mínimos sugeridos.

b) Análise Sísmica

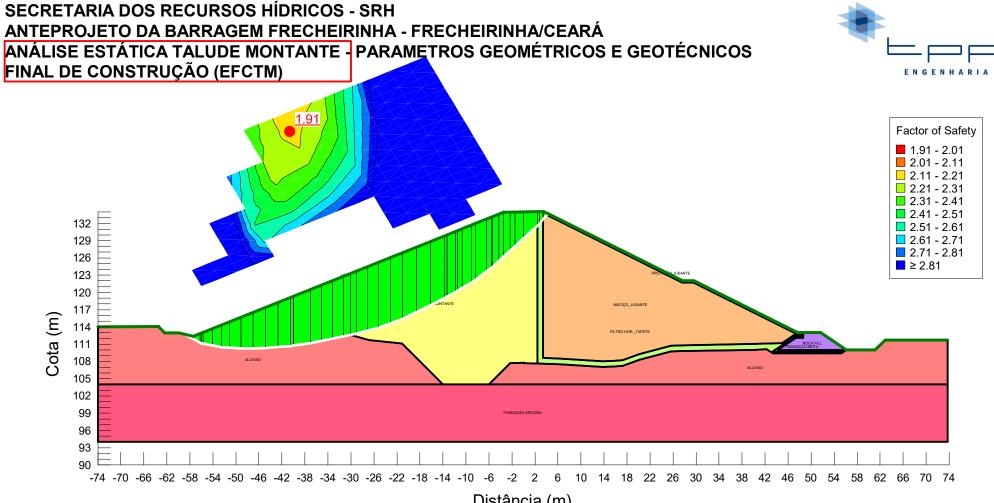
Os cálculos efetuados para simular um abalo sísmico foram feitos considerando o corpo da barragem como rígido, sendo que a caracterização da Sísmica se dá através do valor da aceleração máxima esperada na fundação. Esta é considerada constante ao longo do perfil da barragem. Os valores dos fatores de segurança obtidos são mostrados no quadro a seguir:

Quadro 5.6 - Fatores de Segurança da Análise de Estabilidade Sísmica

Simulação	C.S. Mínimo	Fator de Segurança
Final de Construção – Talude de Montante	1,0	1,48
Final de Construção – Talude de Jusante	1,0	1,36
Reservatório Cheio – Talude de Jusante	1,0	1,24
Rebaixamento Rápido – Talude de Montante	1,0	1,00

Quanto aos coeficientes de segurança resultantes da análise de estabilidade, verifica-se que estão todos acima dos valores mínimos sugeridos.

São apresentados a seguir as figuras com os dados e resultados obtidos das simulações com o Slope/W.



5.10 - REDE DE FLUXO DA BARRAGEM

Para determinar a rede de fluxo foi analisada a seção máxima da barragem.

Foi usado o Método dos Elementos Finitos através do soft SEEP/W do pacote Geostudio/2012.

Os dados utilizados e resultados obtidos são exibidos na figura da rede de fluxo a seguir.

Name: MACIÇO JUSANTE Model: Mohr-Coulomb Unit Weight: 19 kN/m³ Cohesion': 15 kPa

Phi': 29 ° Phi-B: 0°

> Name: TRANSIÇÃO BRITA Model: Mohr-Coulomb Unit Weight: 19.5 kN/m³

Cohesion': 0 kPa

Phi': 35 ° Phi-B: 0° Name: MACIÇO MONTANTE Model: Mohr-Coulomb Unit Weight: 18.4 kN/m³ Cohesion': 20 kPa

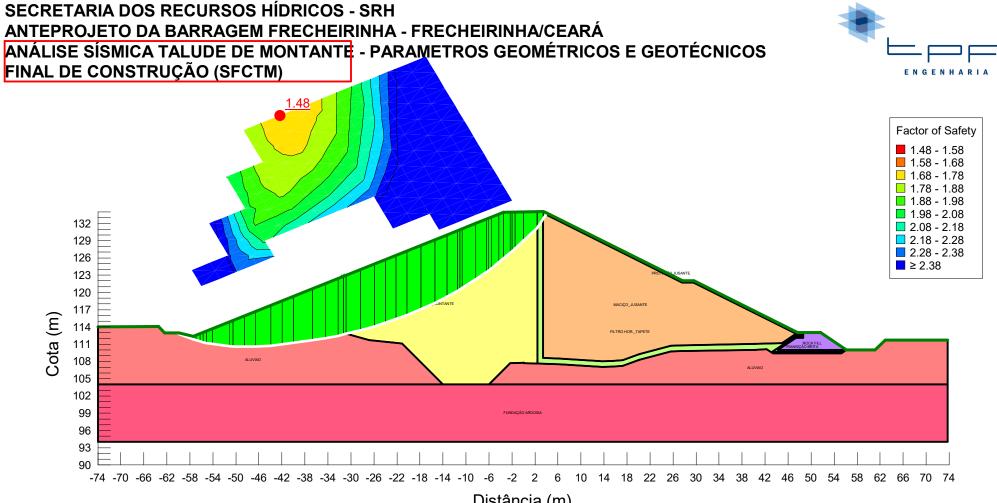
Phi': 27 ° Phi-B: 0° Name: TRANSIÇÃO BRITA Model: Mohr-Coulomb Unit Weight: 19.5 kN/m³ Cohesion': 0 kPa

Phi': 35 ° Phi-B: 0°

Name: FILTRO HOR. TAPETE Name: ALUVIAO Model: Mohr-Coulomb Unit Weight: 19.5 kN/m³ Cohesion': 0 kPa

Phi': 35 ° Phi-B: 0° Model: Mohr-Coulomb Unit Weight: 19.5 kN/m³ Cohesion': 0 kPa

Phi': 30 ° Phi-B: 0° Name: RIP RAP Model: Mohr-Coulomb Unit Weight: 21.5 kN/m³


Cohesion': 0 kPa

Name: FUNDAÇÃO ARDOSIA Phi': 40 ° Model: Bedrock (Impenetrable) Phi-B: 0 °

Name: PROTEÇÃO JUSANTE Model: Mohr-Coulomb Unit Weight: 19.5 kN/m³ Cohesion': 0 kPa

Phi': 35 ° Phi-B: 0° Name: ROCK FILL Model: Mohr-Coulomb Unit Weight: 21.5 kN/m³

Cohesion': 0 kPa

Name: MACIÇO JUSANTE Model: Mohr-Coulomb Unit Weight: 19 kN/m³ Cohesion': 15 kPa

Phi': 29 ° Phi-B: 0°

> Name: TRANSIÇÃO BRITA Model: Mohr-Coulomb Unit Weight: 19.5 kN/m³

Cohesion': 0 kPa

Phi': 35 ° Phi-B: 0° Name: MACIÇO MONTANTE Model: Mohr-Coulomb Unit Weight: 18.4 kN/m³ Cohesion': 20 kPa

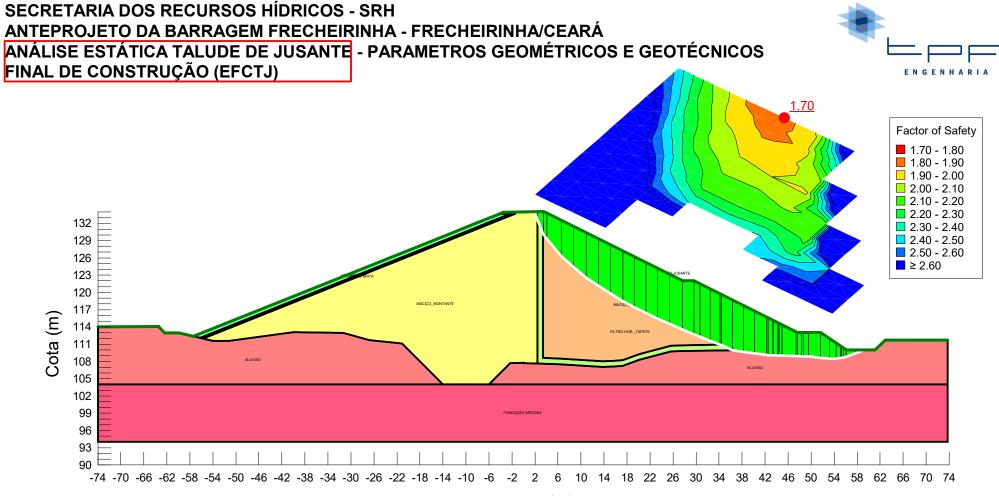
Phi': 27 ° Phi-B: 0° Name: TRANSIÇÃO BRITA Model: Mohr-Coulomb Unit Weight: 19.5 kN/m3 Cohesion': 0 kPa

Phi': 35 ° Phi-B: 0°

Name: FILTRO HOR. TAPETE Name: ALUVIAO Model: Mohr-Coulomb Unit Weight: 19.5 kN/m³ Cohesion': 0 kPa

Phi': 35 ° Phi-B: 0° Model: Mohr-Coulomb Unit Weight: 19.5 kN/m³ Cohesion': 0 kPa

Phi': 30 ° Phi-B: 0° Name: RIP RAP Model: Mohr-Coulomb Unit Weight: 21.5 kN/m³


Cohesion': 0 kPa

Name: FUNDAÇÃO ARDOSIA Phi': 40 ° Model: Bedrock (Impenetrable) Phi-B: 0 °

Name: PROTEÇÃO JUSANTE Model: Mohr-Coulomb Unit Weight: 19.5 kN/m³ Cohesion': 0 kPa

Phi': 35 ° Phi-B: 0° Name: ROCK FILL Model: Mohr-Coulomb Unit Weight: 21.5 kN/m³

Cohesion': 0 kPa

Name: MACIÇO JUSANTE Model: Mohr-Coulomb Unit Weight: 19 kN/m³ Cohesion': 15 kPa

Phi': 29 ° Phi-B: 0°

> Name: TRANSIÇÃO BRITA Model: Mohr-Coulomb Unit Weight: 19.5 kN/m³

Cohesion': 0 kPa

Phi': 35 ° Phi-B: 0° Name: MACIÇO MONTANTE Model: Mohr-Coulomb Unit Weight: 18.4 kN/m³ Cohesion': 20 kPa

Phi': 27 ° Phi-B: 0° Name: TRANSIÇÃO BRITA Model: Mohr-Coulomb Unit Weight: 19.5 kN/m³ Cohesion': 0 kPa

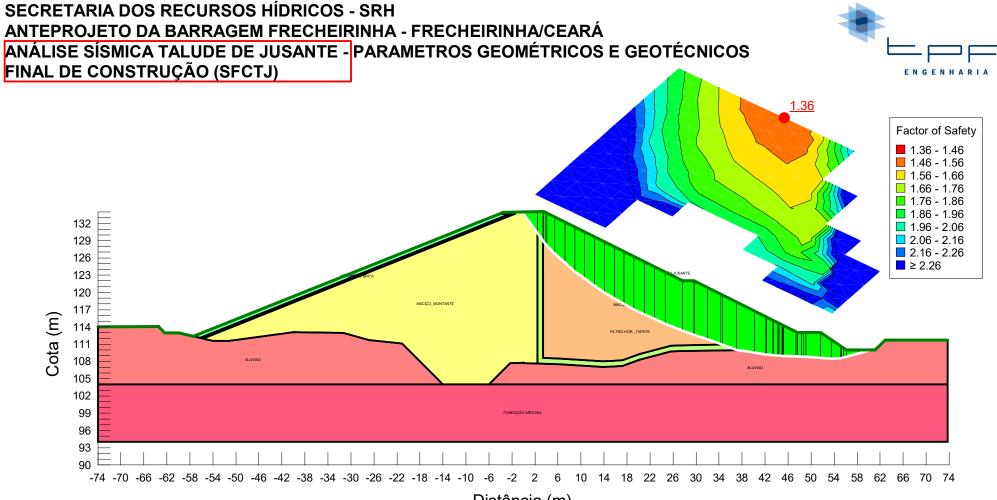
Phi': 35 ° Phi-B: 0°

Name: FILTRO HOR. TAPETE Name: ALUVIAO Model: Mohr-Coulomb Unit Weight: 19.5 kN/m³ Cohesion': 0 kPa

Phi': 35 ° Phi-B: 0° Model: Mohr-Coulomb Unit Weight: 19.5 kN/m³ Cohesion': 0 kPa

Phi': 30 ° Phi-B: 0° Name: RIP RAP Model: Mohr-Coulomb

Unit Weight: 21.5 kN/m³


Cohesion': 0 kPa

Name: FUNDAÇÃO ARDOSIA Phi': 40 ° Model: Bedrock (Impenetrable) Phi-B: 0 °

Name: PROTEÇÃO JUSANTE Model: Mohr-Coulomb Unit Weight: 19.5 kN/m³ Cohesion': 0 kPa

Phi': 35 ° Phi-B: 0° Name: ROCK FILL Model: Mohr-Coulomb Unit Weight: 21.5 kN/m³

Cohesion': 0 kPa

Name: MACIÇO JUSANTE Model: Mohr-Coulomb Unit Weight: 19 kN/m³ Cohesion': 15 kPa

Phi': 29 ° Phi-B: 0°

> Name: TRANSIÇÃO BRITA Model: Mohr-Coulomb Unit Weight: 19.5 kN/m³

Cohesion': 0 kPa

Phi': 35 ° Phi-B: 0° Name: MACIÇO MONTANTE Model: Mohr-Coulomb Unit Weight: 18.4 kN/m³ Cohesion': 20 kPa

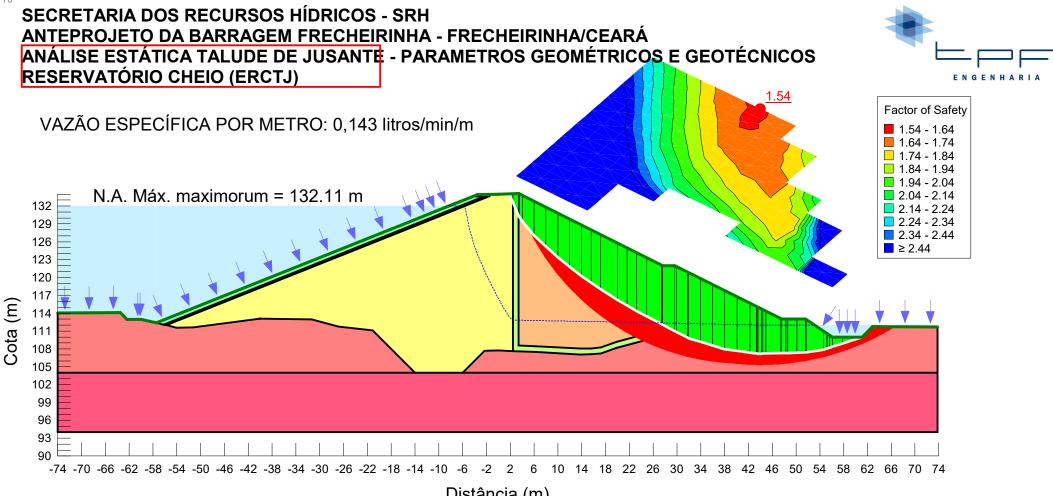
Phi': 27 ° Phi-B: 0° Name: TRANSIÇÃO BRITA Model: Mohr-Coulomb Unit Weight: 19.5 kN/m³ Cohesion': 0 kPa

Phi': 35 ° Phi-B: 0°

Name: FILTRO HOR. TAPETE Name: ALUVIAO Model: Mohr-Coulomb Unit Weight: 19.5 kN/m³ Cohesion': 0 kPa

Phi': 35 ° Phi-B: 0° Model: Mohr-Coulomb Unit Weight: 19.5 kN/m³ Cohesion': 0 kPa

Phi': 30 ° Phi-B: 0° Name: RIP RAP Model: Mohr-Coulomb Unit Weight: 21.5 kN/m³


Cohesion': 0 kPa

Name: FUNDAÇÃO ARDOSIA Phi': 40 ° Model: Bedrock (Impenetrable) Phi-B: 0 °

Name: PROTEÇÃO JUSANTE Model: Mohr-Coulomb Unit Weight: 19.5 kN/m³ Cohesion': 0 kPa

Phi': 35 ° Phi-B: 0° Name: ROCK FILL Model: Mohr-Coulomb Unit Weight: 21.5 kN/m³

Cohesion': 0 kPa

Name: MACICO JUSANTE Model: Mohr-Coulomb Unit Weight: 19 kN/m³ Cohesion': 15 kPa

Phi': 29° Phi-B: 0° Name: MACIÇO MONTANTE Model: Mohr-Coulomb Unit Weight: 18.4 kN/m³ Cohesion': 20 kPa

Phi': 27 ° Phi-B: 0° Name: TRANSIÇÃO BRITA Model: Mohr-Coulomb Unit Weight: 19.5 kN/m³ Cohesion': 0 kPa

Phi': 35 ° Phi-B: 0°

Name: FILTRO HOR._TAPETE Name: ALUVIAO Model: Mohr-Coulomb Unit Weight: 19.5 kN/m³

Cohesion': 0 kPa

Phi': 35 ° Phi-B: 0° Model: Mohr-Coulomb Unit Weight: 19.5 kN/m3

Cohesion': 0 kPa Phi': 30 ° Phi-B: 0°

Name: PROTEÇÃO JUSANTE

Name: FUNDAÇÃO ARDOSIA Phi': 40 °

Model: Bedrock (Impenetrable) Phi-B: 0 °

Model: Mohr-Coulomb Unit Weight: 19.5 kN/m³ Cohesion': 0 kPa

Phi': 35 °

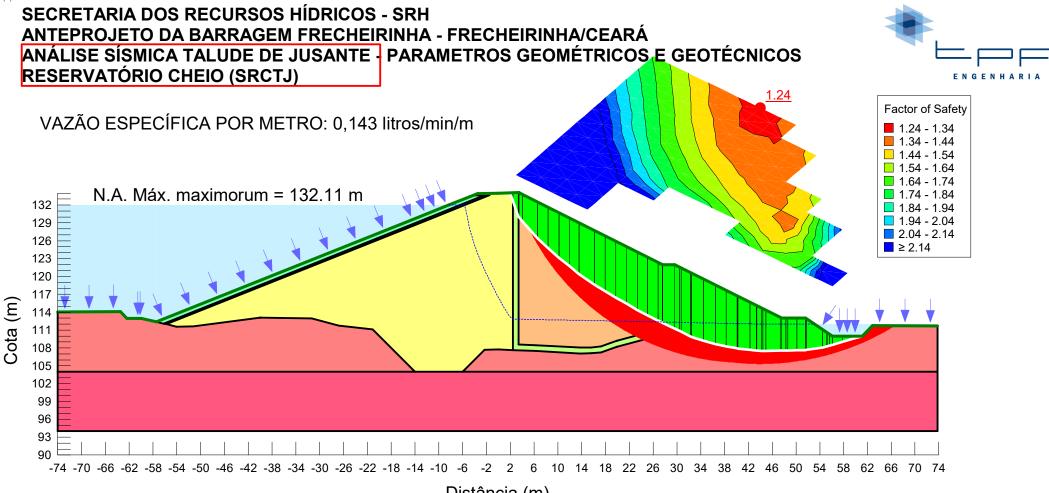
Phi-B: 0°

Name: ROCK FILL Model: Mohr-Coulomb Unit Weight: 21.5 kN/m³

Cohesion': 0 kPa

Name: RIP RAP

Cohesion': 0 kPa


Model: Mohr-Coulomb

Unit Weight: 21.5 kN/m³

Phi': 40° Phi-B: 0°

Name: TRANSIÇÃO BRITA Model: Mohr-Coulomb Unit Weight: 19.5 kN/m³ Cohesion': 0 kPa

Phi': 35 ° Phi-B: 0°

Name: MACICO JUSANTE Model: Mohr-Coulomb Unit Weight: 19 kN/m³ Cohesion': 15 kPa

Phi': 29° Phi-B: 0°

Name: TRANSIÇÃO BRITA Model: Mohr-Coulomb Unit Weight: 19.5 kN/m³ Cohesion': 0 kPa

Phi': 35 ° Phi-B: 0° Name: MACIÇO MONTANTE Model: Mohr-Coulomb Unit Weight: 18.4 kN/m³ Cohesion': 20 kPa

Phi': 27 ° Phi-B: 0° Name: TRANSIÇÃO BRITA Model: Mohr-Coulomb Unit Weight: 19.5 kN/m³ Cohesion': 0 kPa

Phi': 35 ° Phi-B: 0°

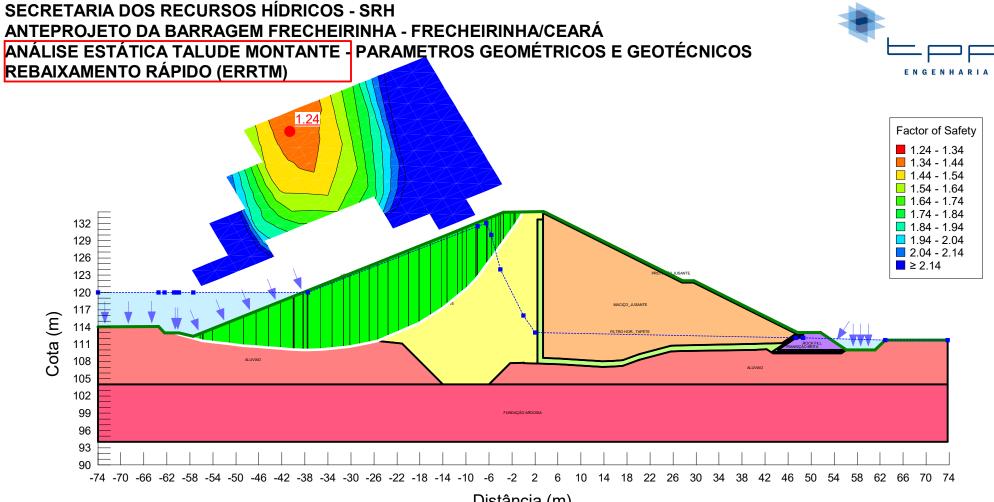
Name: FILTRO HOR._TAPETE Name: ALUVIAO Model: Mohr-Coulomb Unit Weight: 19.5 kN/m³ Cohesion': 0 kPa

Phi': 35 ° Phi-B: 0° Model: Mohr-Coulomb Unit Weight: 19.5 kN/m3 Cohesion': 0 kPa

Phi': 30 ° Phi-B: 0° Unit Weight: 21.5 kN/m³ Cohesion': 0 kPa

Name: FUNDAÇÃO ARDOSIA Phi': 40 ° Model: Bedrock (Impenetrable) Phi-B: 0 °

Name: PROTEÇÃO JUSANTE Model: Mohr-Coulomb


Unit Weight: 19.5 kN/m³ Cohesion': 0 kPa

Phi': 35 ° Phi-B: 0° Name: ROCK FILL Model: Mohr-Coulomb Unit Weight: 21.5 kN/m³

Cohesion': 0 kPa

Name: RIP RAP

Model: Mohr-Coulomb

Distância (m)

Name: MACIÇO JUSANTE Model: Mohr-Coulomb Unit Weight: 19 kN/m³ Cohesion': 15 kPa

Phi': 29 ° Phi-B: 0°

> Name: TRANSIÇÃO BRITA Model: Mohr-Coulomb Unit Weight: 19.5 kN/m³

Cohesion': 0 kPa

Phi': 35 ° Phi-B: 0° Name: MACIÇO MONTANTE Model: Mohr-Coulomb Unit Weight: 18.4 kN/m³ Cohesion': 20 kPa

Phi': 27 ° Phi-B: 0° Name: TRANSIÇÃO BRITA Model: Mohr-Coulomb Unit Weight: 19.5 kN/m3 Cohesion': 0 kPa

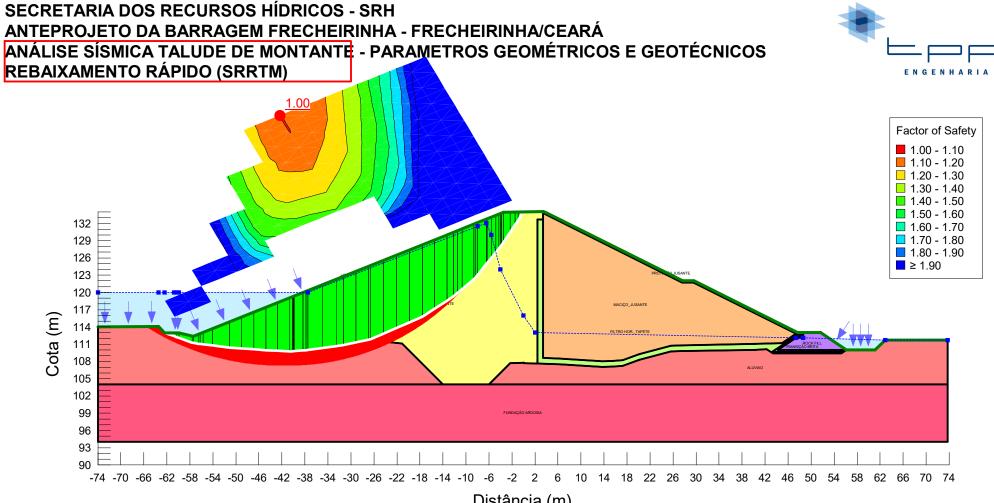
Phi': 35 ° Phi-B: 0°

Name: FILTRO HOR. TAPETE Name: ALUVIAO Model: Mohr-Coulomb Unit Weight: 19.5 kN/m³ Cohesion': 0 kPa

Phi': 35 ° Phi-B: 0° Model: Mohr-Coulomb Unit Weight: 19.5 kN/m³ Cohesion': 0 kPa

Phi': 30 ° Phi-B: 0° Model: Mohr-Coulomb Unit Weight: 21.5 kN/m³ Cohesion': 0 kPa

Name: RIP RAP


Name: FUNDAÇÃO ARDOSIA Phi': 40 ° Model: Bedrock (Impenetrable) Phi-B: 0 °

Name: PROTEÇÃO JUSANTE Model: Mohr-Coulomb Unit Weight: 19.5 kN/m³ Cohesion': 0 kPa

Phi': 35 ° Phi-B: 0° Name: ROCK FILL Model: Mohr-Coulomb Unit Weight: 21.5 kN/m³

Cohesion': 0 kPa

Phi': 40° Phi-B: 0°

Distância (m)

Name: MACIÇO JUSANTE Model: Mohr-Coulomb Unit Weight: 19 kN/m³ Cohesion': 15 kPa

Phi': 29 ° Phi-B: 0°

Name: TRANSIÇÃO BRITA Model: Mohr-Coulomb Unit Weight: 19.5 kN/m³

Cohesion': 0 kPa

Phi': 35 ° Phi-B: 0° Name: MACIÇO MONTANTE Model: Mohr-Coulomb Unit Weight: 18.4 kN/m³ Cohesion': 20 kPa

Phi': 27 ° Phi-B: 0° Name: TRANSIÇÃO BRITA Model: Mohr-Coulomb Unit Weight: 19.5 kN/m3 Cohesion': 0 kPa

Phi': 35 ° Phi-B: 0°

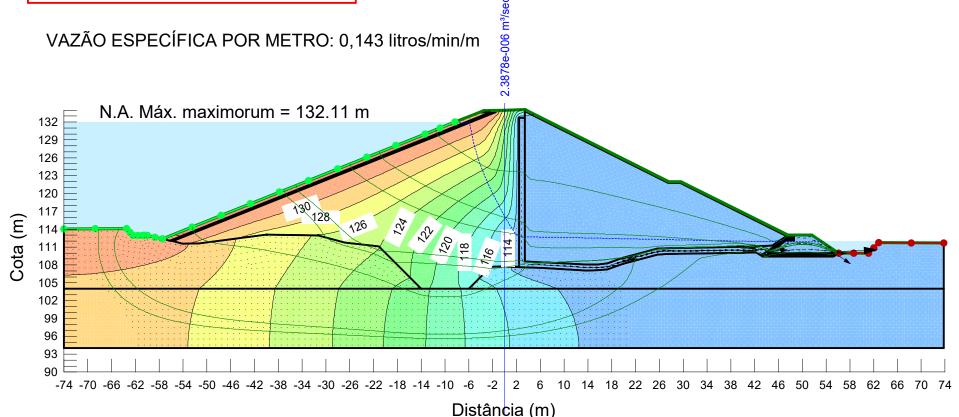
Name: FILTRO HOR. TAPETE Name: ALUVIAO Model: Mohr-Coulomb Unit Weight: 19.5 kN/m³ Cohesion': 0 kPa

Phi': 35 ° Phi-B: 0° Model: Mohr-Coulomb Unit Weight: 19.5 kN/m³ Cohesion': 0 kPa

Phi': 30 ° Phi-B: 0° Name: RIP RAP Model: Mohr-Coulomb Unit Weight: 21.5 kN/m³

Cohesion': 0 kPa

Name: FUNDAÇÃO ARDOSIA Phi': 40 ° Model: Bedrock (Impenetrable) Phi-B: 0 °


Name: PROTEÇÃO JUSANTE Model: Mohr-Coulomb Unit Weight: 19.5 kN/m³ Cohesion': 0 kPa

Phi': 35 ° Phi-B: 0° Name: ROCK FILL Model: Mohr-Coulomb Unit Weight: 21.5 kN/m³

Cohesion': 0 kPa

Phi': 40° Phi-B: 0° SECRETARIA DOS RECURSOS HÍDRICOS - SRH ANTEPROJETO DA BARRAGEM FRECHEIRINHA - FRECHEIRINHA/CEARÁ REDE DE FLUXO (CHEIA 10.000ANOS) - PARAMETROS GEOMÉTRICOS E GEOTÉCNICOS

Name: MACICO JUSANTE

K-Function: MACIÇO Ky'/Kx' Ratio: 0.3

Rotation: 0°

Name: MACICO MONTANTE

K-Function: MACIÇO Ky'/Kx' Ratio: 0.3 Rotation: 0°

Model: Saturated / Unsaturated Model: Saturated / Unsaturated

K-Function: DRENO Ky'/Kx' Ratio: 1 Rotation: 0°

Name: FILTRO HOR._TAPETE Name: FUNDAÇÃO ARDOSIA Name: RIP RAP

Model: Saturated Only Sat Kx: 5e-007 m/sec Ky'/Kx' Ratio: 1

Ky'/Kx' Ratio: 1 Rotation: 0° Rotation: 0°

Name: TRANSIÇÃO BRITA

K-Function: DRENO Ky'/Kx' Ratio: 1 Rotation: 0°

Name: FILTRO VERTICAL Model: Saturated / Unsaturated Model: Saturated / Unsaturated Model: Saturated Only

K-Function: FILTRO Ky'/Kx' Ratio: 1 Rotation: 0°

Name: ALUVIAO Sat Kx: 5e-007 m/sec Ky'/Kx' Ratio: 0.3 Rotation: 0°

Name: MACIÇO JUSANTE Model: Saturated / Unsaturated K-Function: MACIÇO Ky'/Kx' Ratio: 0.3 Rotation: 0°

Name: ROCK FILL

K-Function: ENROCA

Model: Saturated / Unsaturated

Model: Saturated / Unsaturated

K-Function: ENROCA Ky'/Kx' Ratio: 1

Rotation: 0°

75

ENGENHARIA

5.11 - COTA DO VOLUME MORTO

A cota do volume morto foi definida em 116,00 m (NA mínimo operacional)

acumulando 2,849 hm³ correspondente a cerca 3,47% do volume máximo que é de

82,177 hm³, conforme Figura 3.1.

5.12 - TOMADA D'ÁGUA

A tomada d'água será implantada na estaca 29+10,00 m do eixo barrrável pela

a ombreira direita. A tomada d'água terá extensão de 115,00 m e será constituída de

uma galeria tubular de diâmetro Ø=1200mm em aço ASTM A-36. O eixo da galeria

ficará na cota 114,36 m. O corpo do tubo será envolvido em concreto estrutural

(envelopamento). A tomada d'água foi projetada para regularizar uma vazão de 20,67

hm³/ano ou 0,655 m³/s (655 l/s – vazão regularizada com 90% de garantia).

No lado de montante, o extremo da tubulação com o registro de gaveta será

protegido por uma caixa de concreto armado, com grade de barra de ferro chato de

malha #100mm x 500mm.

No lado de jusante será construída uma casa de comando da válvula

dispersora, associada à válvula borboleta montada imediatamente a montante, uma

estrutura de concreto armado para abrigo dos equipamentos hidromecânicos e uma

bacia de dissipação da energia cinética com fundo abaixo da cota inicial do canal de

restituição da tomada d'água.

Após a bacia de dissipação no início do trecho do canal de restituição, está

previsto uma proteção com enrocamento com a finalidade de evitar erosões

provocadas pelo fluxo das águas efluentes da tomada d'água.

Para o atendimento das vazões regularizadas de projeto, a tomada d'água da

barragem será operada entre as cotas 131,00 m e 116,00 m, que correspondem,

respectivamente, à capacidade máxima de acumulação do reservatório (82,177 hm³)

e ao seu volume morto (2,849 hm³).

O esvaziamento total do reservatório, considerando a cota máxima de operação

normal (131,00 m) e a válvula dispersora totalmente aberta, ocorrerá **no tempo médio**

de aproximadamente 133 dias (cerca de 04 meses).

tpfe.com.br

75

No item 5 deste relatório, apresenta-se a memória de cálculo do tempo em dias para o rebaixamento do reservatório a partir do nível máximo de operação normal.

As escavações obrigatórias atingirão a cota 113,28 m que permite a implantação da tomada d'água de acordo com as seções transversais projetadas.

O trecho da tomada d'água a jusante do filtro vertical será todo envolvido por areia grossa do tapete drenante. Da mesma forma o dreno de pé no local da tomada d'água será construído envolvendo a galeria.

5.12.1 - DIMENSIONAMENTO HIDRÁULICO DA GALERIA

Neste item é apresentado o dimensionamento da galeria da tomada d'água e o tempo de esvaziamento do reservatório da barragem Frecheirinha. Para tanto, fez-se necessário calcular o tempo necessário "t" para esvaziamento completo do reservatório até atingir a cota do eixo da galeria, em função da variação do nível do reservatório e a correspondente vazão liberação pela tomada d'água.

A **Figura 5.7** apresenta um desenho esquemático do esvaziamento do reservatório.

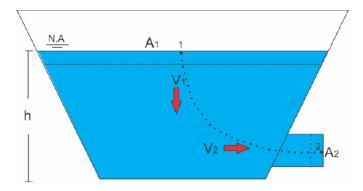


Figura 5.7 – Desenho Esquemático da Liberação Pela Tomada D'água

Após algumas simulações de custo de implantação e de tempo médio de esvaziamento do reservatório, em consenso com a SRH, foi adotado para a galeria uma tubulação de diâmetro \emptyset = 1200 mm.

Têm-se a seguinte velocidade média de escoamento para o diâmetro adotado, considerando a vazão regularizada de 0,655 m³/s:

 $Q = V \cdot S$ (equação da continuidade)

$$S = \frac{\pi D^2}{4} = \frac{\pi \times 1,20^2}{4} = 1,131 \ m^2$$

$$V = \frac{Q}{S} = \frac{0,655}{1.131} \cong 0,60 \text{ m/s}$$

A determinação das demais velocidades médias (e vazões) na tubulação da tomada d'água, para os diversos níveis entre as cotas 131,00 m e 114,36 m (eixo da galeria), dar-se da seguinte maneira:

Aplicando a equação de Bernoulli entre os pontos 1 e 2.

$$\frac{P_{1}}{\gamma} + h + \frac{\overline{V_{1}^{2}}}{2g} = \frac{P_{2}}{\gamma} + 0 + \frac{\overline{V_{2}^{2}}}{2g} + h_{f} + h_{L}$$

tem-se:

$$P_1 = P_2 = P_{atm}$$

$$V_1 \cong 0$$

 h_f = perda de carga por fricção

 $h_{\!\scriptscriptstyle L}$ = perda de carga localizada.

 h_f é determinada pela expressão de Darcy-Weisbach dada por:

$$h_f = f \cdot \frac{L}{D} \cdot \frac{V_2^2}{2g}$$

$$h_L = \sum Ki \frac{V_2^2}{2g}$$

Ki = coeficiente de perda de carga localizada.

$$K_1 = \text{Grade} = 1,45$$

 K_2 = Válvula Dispersora = 0,46

 K_3 = Válvula Borboleta = 0,36

 K_4 = Registro de Gaveta = 0,15

$$K_5 = Saida = 1,0$$

$$h_t = h_f + h_L$$

$$h_{t} = f \cdot \frac{L}{D} \cdot \frac{V_{2}^{2}}{2g} + \sum K_{i} \cdot \frac{V_{2}^{2}}{2g}$$

$$h_t = f \cdot \frac{115}{1,20} \cdot \frac{V_2^2}{19,62} + 3,42 \cdot \frac{V_2^2}{19,62}$$

$$h_t = 4,885 \cdot f \cdot V_2^2 + 0,174 \cdot V_2^2$$

Substituindo na equação de Bernoulli, obtém:

$$h = 0.174V_2^2 + 4.885fV_2^2$$

$$V_2 = \left[\frac{h}{(0,174 + 4,885f)}\right]^{1/2}$$

Tem-se a velocidade como função de f. O processo de resolução deste problema é pelo método da convergência. Atribui-se valor a f e determina-se V_2 . Com V_2 calcula f e determina-se novamente V_2 . O processo prossegue até a convergência.

$$Re = \frac{V \cdot D}{D}$$

Onde:

Re = Número de Reynold

 υ = Viscosidade Cinemética

Para a água a 30º tem-se:

$$v = 8.04 \times 10^{-7} \, m^2 \, / \, s$$

Do ábaco de Rugosidade Relativa x Diâmetro tem-se para a tubulação de D=1200mm, $\frac{e}{D}=0.00004$.

Para z = 16,64 m (131,00 m - 114,36 m), adotando f = 0,015, tem-se:

$$V_2 = \left[\frac{16,64}{0,174 + 4,885 \times 0,015}\right]^{1/2} = 8,20 \text{ m/s}$$

Para
$$V_2 = 8,20 \, m/s$$

$$Re = \frac{8,20 \times 1,20}{8.04 \times 10^{-7}} = 1,22 \times 10^{7}$$

Para Re = 1,22 x
$$10^7$$
 e $\frac{e}{D}$ = 0,00004

Do ábaco de Moody tira-se:

$$f = 0.011m$$

Para f = 0.011 tem-se:

$$V_2 = \left[\frac{16,64}{0,174 + 4,885 \times 0,011}\right]^{1/2} = 8,55 \text{ m/s}$$

$$Re = \frac{8,55 \times 1,20}{8.04 \times 10^{-7}} = 1,06 \times 10^{7}$$

Do Ábaco de Moody tira-se $f \cong 0.011$ OK!

Logo, temos o valor de V₂ em função de h dado pela seguinte expressão:

$$V_2 = \left[\frac{h}{0,174 + 4,885 \times 0,011}\right]^{1/2}$$
$$V_2 = 2.095. h^{0.5}$$

Com base na expressão anterior, determinou-se o tempo total de esvaziamento para cada cota do reservatório, entre o nível do sangradouro (cota 131,00 m) e a cota do eixo da tomada d'água (cota 114,36 m), para tanto foram obtidos os valores das velocidades em cada nível do lago e como a área da tubulação (A₂) é constante e igual a 1,131 m², foi possível calcular as respectivas vazões (gerando uma curva cota x vazão).

A vazão para a cota 116,00 m (nível do volume morto) é igual a Q = 2,095 x $(116,00 - 114,36)^{0.5} \text{ x} 1,131 = 3,035 \text{ m}^3/\text{s}$, valor superior à vazão regularizada prevista.

Esse procedimento foi repetido da Cota 131,00m a 114,36m, obtendo-se o **Quadro 5.7** e o gráfico cota x vazão da **Figura 5.8**:

Quadro 5.7 – Curva-Chave da Tomada D'Água

Cota (m)	Vazão (m³/s)	Veloc (m/s)	Cota (m)	Vazão (m³/s)	Veloc (m/s)
114,36	0,000	0,00	123,00	6,966	6,16
115,00	1,896	1,68	124,00	7,358	6,51
116,00	3,035	2,68	125,00	7,731	6,84
117,00	3,851	3,40	126,00	8,086	7,15
118,00	4,522	4,00	127,00	8,426	7,45
119,00	5,105	4,51	128,00	8,753	7,74
120,00	5,628	4,98	129,00	9,068	8,02
121,00	6,107	5,40	130,00	9,373	8,29
122,00	6,551	5,79	131,00	9,668	8,55

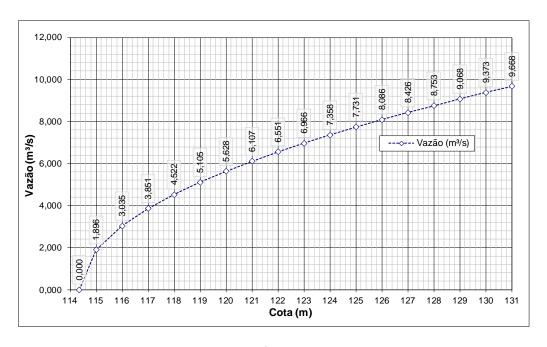


Figura 5.8 - Gráfico Cota X Vazão

Com o auxílio dessa curva e utilizando-se a curva cota x volume do reservatório, o tempo máximo para o esvaziamento do reservatório (atingir a cota 114,36 m) foi calculado por processo interativo em torno de **133 dias** a partir do instante em que a lâmina no vertedouro é zero (reservatório no nível máximo) e a válvulas e o registro são totalmente abertos, conforme mostra a **Figura 5.9**.

tpfe.com.br

80

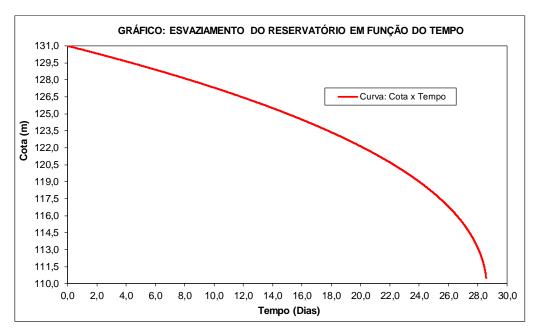


Figura 5.9 – Gráfico Esvaziamento do Reservatório (Cota x Tempo)

5.12.2 - MEMÓRIA DE CÁLCULO DO PROJETO ELÉTRICO DA CASA DE COMANDO

Apresentamos a seguir a Memória de Cálculo do Projeto Elétrico da Casa De Comando e da Sala de Manobras da Tomada D'água da Barragem Frecheirinha.

5.12.2.1 - Sistema de Ar Condicionado

O Projeto foi elaborado com base nas seguintes Normas Técnicas e recomendações:

- NBR 5410-2004 Instalações Elétricas de Baixa Tensão
- NBR 16401 Instalações de Ar-condicionado Sistemas centrais e unitários:
 - Parte 1 Projetos das Instalações;
 - Parte 2 Parâmetros de Conforto Térmico;
 - Parte 3 Qualidade do ar interior.

METODOLOGIA

A metodologia utilizada para cálculo da carga térmica necessária neste memorial consiste em determinar a quantidade de calor que deverá ser retirada de um ambiente, dando-lhe condições climáticas ideais para o conforto humano.

82

ENGENHARIA

Este cálculo é realizado conforme a norma NBR 16401-1, a qual prevê uma forma simplificada e com constantes já definidas para os valores a serem considerados.

Para preencher o formulário simplificado deverá ser informado:

As dimensões do ambiente a ser condicionado;

As janelas, portas e os vãos livres, com as respectivas dimensões;

O tipo de parede (leve ou pesada) e piso;

• O número de lâmpadas com a respectiva potência elétrica consumida;

Se o recinto está localizado sob telhados ou andares;

Outros elementos que possam interferir na carga térmica.

Para cada valor informado será multiplicado pela constante da coluna fatores. O valor calculado informará o valor em Btu/h necessário para cada item e será somado no final da 1ª parte da Tabela. Na 2ª parte o valor total em Btu/h será multiplicado pelo fator climático da região, conforme apresentada a diante, o resultado informará a carga térmica mínima necessária do equipamento para a referida área.

BASES DE CÁLCULO

Condições Climáticas:

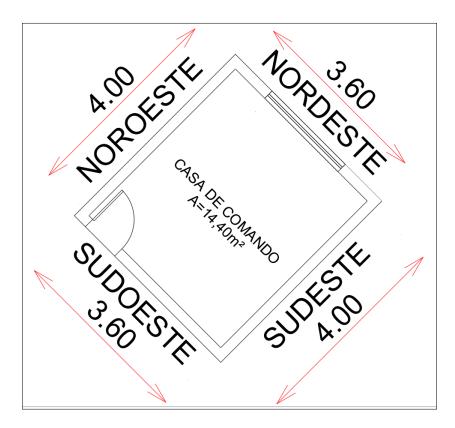
Verão:

Temperatura externa: 35,9° C;

Umidade Externa: 58%.

PROCEDÊNCIAS DO CALOR

a) Tipo I – Janelas c/ Isolação:


Não serão utilizadas Janelas com Isolação específica.

b) Tipo II – Janelas de Transmissão (Vidro Comum):

A Casa de Comando só tem uma janela na parede lado Nordeste com as seguintes dimensões: 2,00m x 1,10m (LxA).

Largura: 2,0m e Altura:1,10m

c) Tipo III – Paredes:

A altura da sala é de 2,70m, e as larguras das paredes são:

Lados Noroeste e Sudeste: 4,00m.

Lados Nordeste e Sudoeste: 3,60m.

Resumindo, temos:

Parede Sudeste – Largura: 4,00m e Altura: 2,70m

Paredes outras orientações - Largura: 11,20m e Altura: 2,70m

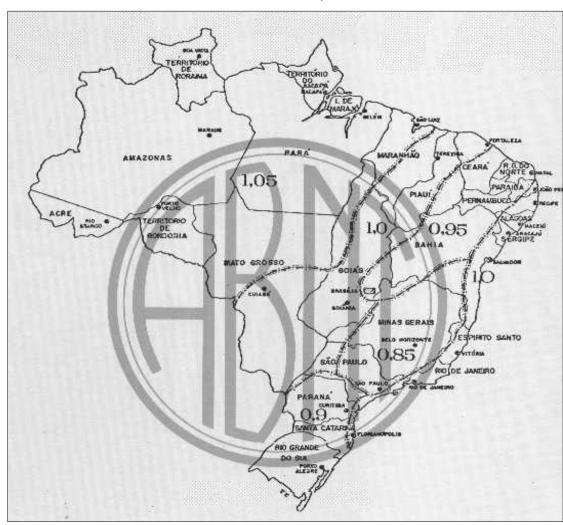
d) Tipo IV – Teto:

As dimensões da laje do recinto são de:

Largura: 4,00m, Comprimento: 3,60m

e) Tipo V – Piso:

As dimensões piso do recinto são de:


Largura: 4,00m, Comprimento: 3,60m

f) Tipo VI – Pessoas:

Foi considerado um nível de atividade: "Trabalho leve em Bancada", conforme Tabela C.1 da Norma NBR 16401.

- g) Tipo VII Iluminação e Aparelhos:
- Para as lâmpadas foi considerada uma potência de 192W (3 luminárias com 2 lâmpadas de 32W cada).
- Para os Aparelhos e Quadros Elétricos a carga considerada foi de 5 kW e um Fator de Demanda de 1 (Equipamentos ligados 24h). Potência considerada para os Aparelhos Elétricos: 5 kW x 1,0 = 5,0 kW
- Para a Central Óleo-Hidráulica a demanda considerada foi de 7,0 HP,
 conforme Memorial Descritivo do Projeto Elétrico.

CÁLCULO DA CARGA TÉRMICA

O cálculo da carga térmica e, consequentemente, o dimensionamento do aparelho de ar condicionado, está apresentado no quadro a seguir.

Procedência do Calor	Unidades		Fatores			Unid.xFator	Btu/h	
Tipo I - Janelas c/ isolação	Largura	Altura	Total	S/ Proteção	Proteção Interna	Proteção Externa	880)
1.1 - Norte			0,00	1000	480	290	0	
1.2 - Nordeste	2,00	1,10	2,20	1000	400	290	880	
1.3 - Leste			0,00	1130	550	360	0	
1.4 - Sudeste			0,00	840	360	290	0	0
1.5 - Sul			0,00	0	0	0	0	U
1.6 - Sudoeste			0,00	1680	670	480	0	
1.7 - Oeste			0,00	2100	920	630	0	
1.8 - Noroeste			0,00	1500	630	400	0	
Tipo II - Janelas Transmissão	Largura	Altura	Total				462	?
2.1 - Vidro comum	2,00	1,10	2,20		210		462	2
2.2 - Tijolo de vidro/ vidro duplo			0,00		105		0	
Tipo III - Paredes	Largura	Altura	Área	Const	r. Leve	Cons.	1.71	1
3.1 - Externas voltadas p/ Sudeste	4,00	2,70	10,80	5	55	42	454	ļ
3.2 - Externas outras orientações	11,20	2,70	30,24	8	34	50	1.512	
3.3 - Interna // ambientes ñ cond.			0,00		33		0	
Tipo IV - Teto	Compr.	Largura	Total			4.536		
4.1 - Laje	4,00	3,60	14,40		315		4.53	6
4.2 - Em laje, c/2,5 cm de isolação ou mais			0,00	125		0		
4.3 - Entre andares			0,00		52		0	
4.4 - Sob telhado isolado			0,00		72		0	
4.5 - Sob telhado sem isolação			0,00		160		0	
Tipo V - Piso	Compr.	Largura	Total				749	
Piso não colocado sobre o solo	4,00	3,60	14,40		52		749)
Tipo VI - Pessoas							1.26	0
Em Atividade Normal		2		630		1260		
Em Atividade Física (Academia)				1000			0	
Tipo VII - Iluminação e aparelhos							8.94	3
Lâmpadas (Incandecentes)			W	4			0	
Lâmpadas (Fluorescentes)	6	64	W		2		128	3
Aparelhos Elétricos		5	KW		860		4.30	0
Motores	7		HP	645			4.51	5
Número de Computadores	1 ,		W	3,412			0	
Tipo VIII - Portas ou vãos	Largura	Altura	Total				0	
Abertos constantemente			0		630		0	
					SubTotal		18.54	11

CAPACIDADE DO APARELHO (Btu's)	TENSÃO (Volts)
18.000	220

Fator Climático da Região	1
Carga Térmica Total em Btu/h	17.577
TR	1,46

5.12.2.2 - Sistema de Iluminação

O Projeto foi elaborado com base nas seguintes normas técnicas e recomendações:

NBR 5410-2004 – Instalações Elétricas de Baixa Tensão;

NBR/ISO 8995-2013 – Iluminação em Ambientes de Trabalho.

METODOLOGIA

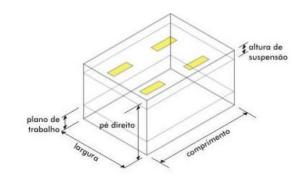
A iluminância é conhecida também como nível de iluminamento. É expresso em "lux", que corresponde ao fluxo luminoso incidente numa determinada superfície por unidade de área. Assim, se uma superfície plana de 1 m² é iluminada perpendicularmente por uma fonte de luz, cujo fluxo luminoso é de 1 lúmen, apresenta uma iluminância de 1 lux. Ou seja,

$$E=(\emptyset)/S$$
 [lux]

Onde:

E – Iluminamento em lux;

Φ – Fluxo luminoso em lúmens;

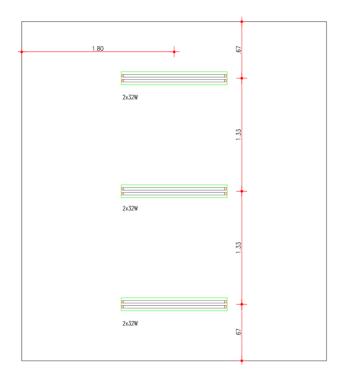

S – Área do ambiente em m²;

DADOS DO AMBIENTE

1 - Dimensões:

Tipo de atividade:

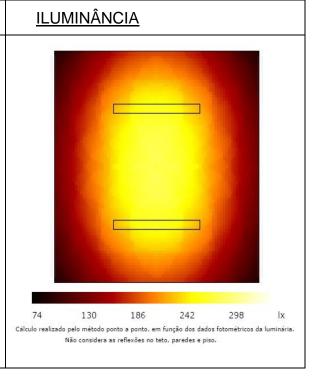
Comprimento:	4,00 m
Largura:	3,60 m
Pé direito:	2,70 m
Plano de trabalho:	0,75 m
Altura de suspensão:	0,00 m
2 - Cores e refletância: Mé	dia
Teto:	50
Parede:	30
Piso:	10
Condições do ambiente:	Médio
Fator de perdas luminosas:	0,7
Fluxo luminoso::	2900 m
Fator de reator:	1,00


DISTRIBUIÇÃO DAS LUMINÁRIAS

Luminária:	LPT 08 2xT26 32W	Código:	7008.232.300
Iluminância Solicitada:			
Quantidade:	3		
Número de Colunas:	1	Número de Linhas	3
Distância entre Colunas:		Distância entre Linhas:	1,33m
Distância Parede-Colunas:	1,80m	Distância Parede-Linhas:	0,67m

tpfe.com.br

Indústria (Geral)



RESULTADOS

Ambiente: E Médio: 179 lx Casa de Comando Luminária: E Máximo: 248 lx LPT 08 2xT26 32W Código: 7008.232.300 E Mínimo: 93 lx Quantidade: E mcz: 226 lx

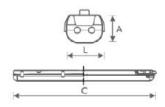
PONTO A PONTO

ESPECIFICAÇÃO TÉCNICA

As especificações técnicas da luminária a está apresentada a seguir:

LPT 08 2XT26 32W

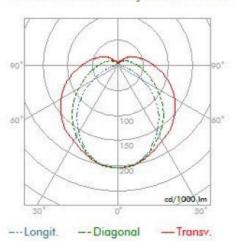
7008.232.300


Especificação: Luminária pendente ou de sobrepor para 2 lâmpadas fluorescentes tubulares de 32W. Corpo em poliéster reforçado com fibra de vidro na cor cinza e refletor em chapa de aço tratada com acabamento em pintura eletrostática epóxi-pó na cor branca. Difusor em poliestireno (Bc7) texturizado e vedação em poliuretano contínuo e grau de proteção IP-65. Possui fechos em poliamida e prensa-cabo injetado em nylon (para cabos de Ø 6 x A 12 mm.). Instalação em perfilado por suspensão tipo gancho I-14 (não inclusos). Equipada com porta-lâmpada antivibratório em policarbonato, com trava de segurança e proteção contra aquecimento nos contatos.

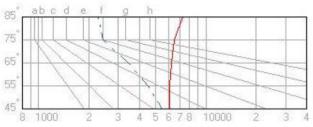
Aplicação: Locais sujeitos a pó não inflamável e umidade (à prova de jatos d´água), onde seja necessário a fácil manutenção de sua limpeza, como indústria alimentícia ou química, frigorífico, estufa, oficina, lava-rápido, lavanderia, etc.

Rendimento: 75%

Dimensões: A= 103 x L= 140 x C= 1285 mm.


DESENHO

FATOR DE UTILIZAÇÃO


TETO (%)		70			50		3	G .	0
PAREDE (%)	50	30	10	50	30	10	30	10	0
PISO (%)		10			10		1	0	0
Kr			FAT	OR DE L	JTILIZAC	AO (X O	.01)		
0.60	30	25	21	29	24	20	23	19	1.7
0.80	37	31	27	34	29	26	28	25	22
1.00	42	36	32	39	34	3.0	33	29	26
1.25	47	41	37	4.4	39	3.5	37	3.4	30
1.50	50	45	41	47	43	39	40	37	34
2.00	56	51	47	52	48	45	46	43	39
2.50	59	55	51	56	52	49	49	47	42
3.00	62	58	55	58	55	52	52	50	45
4.00	65	62	59	61	58	56	5.5	53	14.8
5.00	67	64	62	63	61	58	57	56	51

CURVA DE DISTRIBUIÇÃO LUMINOSA

DIAGRAMA DE LUMINÂNCIA

tpfe.com.br

88

Rua Irene Ramos de Matos,176 51011-530 - Recife Fone: +55 81 3316-0700 CNPJ 12285.441/0001-66

5.12.2.3 - Dimensionamento dos Circuitos

O Projeto foi elaborado com base nas Normas Técnicas e recomendações:

- NBR 5410-2004 Instalações Elétricas de Baixa Tensão;
- NBR 5471 Condutores Elétricos;
- Complementada com esta Memória de Cálculo.

<u>CIRCUITO 1 - ILUMINAÇÃO INTERNA</u>

Caracteristicas do Circuito

Resumo:	Cabo: 2,5 mm ²	P Disjuntor Adotado : 10 A / 220V / 5 kA (Monopolar)				
Proteção do Circuito		l proteção = (l proteção = 1,0 A			
56 x 2,5			<u> </u>			
$\Delta \mathbf{U} = 2 \times 0.92 \times 5 \times 0.92 \times 5 \times 0.99 \times 0.99$	95 ∆U = 0,06V	Δ % = Δ U x 100		$\Delta\% = 0.03$		
Queda de Tensão (ΔU))	Comprime	ento do Circuito = 5 m			
Corrente do Circuito (I	c) lo	$c = 192$ 220×0.95		Ic= 0,92		
				192 W		
3	L	uminária 2x32W	64	192 W		
Qtd.		Especificação	Pot. (W)	Total		
Potência do Circuito (W)					
Cabo Adolado = 2,5 mm	-	pacidade de Condução Corrigida = 24 A				
Cabo Adotado = 2,5 mm²			Capacidade de Condu	ıção = 24 A		
Fator de Agrupamento (f)	= 1		Método de Instala	ação = B1		
Isolação = Isolado PVC			Classe de Ter	nsão = 750 V		
No de Cond. Carregados	= 2		Nº de Circ. Agrupa	ados = 1		
Fatores de Correção						
Tensão = 220 V	F	ator de Potência =	0,95	Icc = 5 kA		

CIRCUITO 2 - TOMADAS (TUG'S)

Caracteristicas do Circuito

Tensão = 220 V	Fator de Po	otência = 0,85	lcc = 5	kA		
Fatores de Correção						
Nº de Cond. Carregados =	2		Nº de Circ. Agrup	ados 1		
Isolação = Isolado PVC	Classe de Tensão = 750 V					
Fator de Agrupamento (f) =	: 1 Método de Instalação = B1					
Cabo Adotado = 2	5 mm ²		Capacidade de Condu	ção = 24 A		
Cabo Adolado = 2	,5 111111-		Capacidade de Condução Corrig	ida = 24 A		
Potência do Circuito (W)						
Qtd.	Espec	cificação	Pot. (W)	Total		
2	Tomada de u	iso Geral (TUG)) 250	500 W		
2	Tomada de u	iso Geral (TUG)) 100	200 W		
1	Tomada de u	iso Geral (TUG)) 55	555 W		
				755 W		
Corrente do Circuito (Ic)	lc =	755	lc = 4,4	ΙΛ Λ		
corrente do circuito (ic)		220 x 0,95	IC = 4,2	14 A		
Queda de Tensão (ΔU)			Comprimento do Circuito = 5 m			
$\Delta U = 2 \times 4,44 \times 5 \times 0,85$	∆U = 0,27 V		Δ % = Δ U x 100	$\Delta\% = 0.12$		
56 x 2,5			220	Δ70 - U, IZ		
Proteção do Circuito		I proteção = 4,44 x 1,1 I proteção = 4,89 A				
Resumo:	Cabo: 2,5 mm ² Disjuntor Adotado: 10 A / 220V / 5 kA (Monopolar)					

CIRCUITO 3 - ILUMINAÇÃO EXTERNA

Caracteristicas do Circuito

Tensão = 220 V		Fator de Potência =	: 0,95	lcc = 5 kA				
Fatores de Correção								
Nº de Cond. Carregados = :	2		Nº de Circ. Agrupados =	: 1				
Isolação = Isolado PVC		Classe de Tensão = 750 V						
Fator de Agrupamento (f) =	1		Método de Instalação = E	31				
Cabo Adotado = 2,5 mm²		Capacidade de Condução = 24 A Capacidade de Condução Corrigida = 24 A						
Potência do Circuito (W)								
Qtd.		Especificação	Pot. (W)	Total				
3		Projeto LED 100W	100	300 W				
				300 W				
Corrente do Circuito (lc)		lc = 400 220 x 0,95	lc	= 1,44 A				
Queda de Tensão (ΔU)		Comprim	ento do Circuito = 5 m	1				
$\Delta U = 2 \times 1,91 \times 5 \times 0,9$	$\Delta U = 0.1 V$	Δ	$\% = \Delta U \times 100$	40/ - 0.04 4				
56 x 2,5			220	$\Delta\% = 0.04 \text{ A}$				
Proteção do Circuito		l proteção =	1,44 x 1,1	I proteção = 1,6 A				
Resumo:	Cabo : 2,5 mm ²	1	Disjuntor Adotado : 10	A / 220V / 5 kA (Monopolar)				

CIRCUITO 4 - AR CONDICIONADO 18.000 BTUs

Caracteristicas do Circuito

Resumo:	Cabo: 4 mm ² Disjuntor Adotado: 16 A / 220V / 5 kA (Monopolar)						
Proteção do Circuito	I proteção = 8,31 x 1,1 I proteção = 9,56						
56 x 2,5	5	220	Δ/0 - 0,15				
$\Delta U = 2 \times 8,31 \times 5 \times 0,89$	∆U = 0,33 V	Δ % = $\Delta U \times 100$	$\Delta\% = 0.15$				
Queda de Tensão (ΔU)		Comprimento do C	ircuito = 5 m				
Corrente do Circuito (lc)	1628 220 x 0,95	lc = 8,31	Α				
			1628 W				
1	Ar-Condicionado 18.000 BTUs	1628	1628 W				
Qtd.	Especificação	Pot. (W)	Total				
Potência do Circuito (W)							
Cabo Adolado = 4	+ 111111-	Capacidade de Condução	Coi 32 A				
Cabo Adotado = 4	1 mm ²	Capacidade de C	Condução = 32 A				
Fator de Agrupamento (f) =	1	Método de Ir	stalação = B1				
Isolação = Isolado PVC		Classe d	e Tensão = 750 V				
Nº de Cond. Carregados = :	Carregados = 2 N° de Circ. Agrupados = 1						
Fatores de Correção							
Tensão = 220 V	Fator de Potência = 0,89	lcc = 5 l	κ A				

<u>CIRCUITO 5 – PAINEL TELECOM (DGO)</u>

Caracteristicas do Circuito

	: 4 mm²		Adotado : 16 A / 3	80V / 5 kA (Monopolar)			
Proteção do Circuito	I pro	oteção = 9,3 x 1,1		l proteção = 10,23 A			
56 x 4		380		△/0 − 0,10			
$\Delta \mathbf{U} = \sqrt{3} \times 9.3 \times 5 \times 0.98$	U = 0,61	$\Delta\% = \Delta U$	x 100	$\Delta\% = 0.16$			
Queda de Tensão (ΔU)		Comprim	Comprimento do Circuito = 5 m				
Corrente do Circuito (lc)	$Ic = \sqrt{3 \times 386}$	6000 0 x 0,98	Ic = 9,	3 A			
				6000 W			
1	Pinel Teleco	m DGC	6000	6000 W			
Qtd.	Especifica	ação	Pot. (W)	Total			
Potência do Circuito (W)							
Cabo Adotado = 4 mm²		•	acidade de Conduç e Condução Corrigi				
Fator de Agrupamento (f) = 1	Método de Instalação = B1 Capacidade de Condução = 28 A						
Isolação = Isolado PVC							
Nº de Cond. Carregados = 3	№ de Circ. Agrupados = 1 Classe de Tensão = 750 V						
Fatores de Correção			0.1-0' 1	i			
	1 ator	de i otericia – 0,30	,	100 = 3 NA			
Tensão = 380 V	Fator	de Potência = 0.98	1	lcc = 5 kA			

tpfe.com.br

91

Rua Irene Ramos de Matos,176 51011-530 - Recife Fone: +55 81 3316-0700 CNPJ 12285.441/0001-66

CIRCUITO 6 - PAINEL TELECOM (SWITCH)

Caracteristicas do Circuito

Resumo:	Cabo: 4 mm ² Disj	juntor Adotado: 16 A / 280V / 5 kA	(Monopolar)			
Proteção do Circuito	I prote	ção = 9,3 x 1,1	I proteção = 10,23 A			
56 x 2,5		220	$\Delta\% = 0.16$			
$\Delta U = \sqrt{3} \times 9.3 \times 5 \times 0.98$	$\Delta U = 0.61 \text{ V}$	Δ % = Δ U x 100				
Queda de Tensão (ΔU)		Comprimento do C	ircuito = 5 m			
Corrente do Circuito (lc)	$\frac{6000}{\sqrt{3} \times 380 \times 0,98}$	Ic = 9.3	Α			
			6000 W			
1	Pinel Telecon DGO	6000 6000 W				
Qtd.	Especificação	Pot. (W) Total				
Potência do Circuito (W)						
Cabo Adolado = 4	+ 111111-	Capacidade de Condução Corrigid	a = 28 A			
Cabo Adotado = 4	1 mm²	Capacidade de Conduçã	o = 28 A			
Fator de Agrupamento (f) =	1	Método de Instalaçã	o = B1			
Isolação = Isolado PVC		Classe de Tensão	o = 750 V			
Nº de Cond. Carregados =	3	Nº de Circ. Agrupado	s = 1			
Fatores de Correção						
Tensão = 380 V	Fator de Potência = 0,98	lcc = 5	kA			

<u>CIRCUITO 7 – PAINEL SUPORTE E CONTROLE - PSC</u>

Caracteristicas do Circuito

Tensão = 380 V	Fator de Potência	Fator de Potência = 0,98								
Fatores de Correção										
No de Cond. Carregados = 3		Nº de Circ. Agrupa	idos = 1							
Isolação = Isolado PVC		Classe de Ten	são = 750 V							
Fator de Agrupamento (f) = 1		Método de Instala	ıção = B1							
Cabo Adotado = 4 mm²	Capacidade de Condução = 28 A pacidade de Condução Corrigida = 28 A									
Potência do Circuito (W)										
Qtd.	Especificação	Pot. (W)	Total							
1	Pinel Telecom DGC	6000	6000 W							
			6000 W							
Corrente do Circuito (lc)	$Ic = \frac{6000}{\sqrt{3 \times 380 \times 0.98}}$	Ic = 9),3 A							
Queda de Tensão (ΔU)	Co	omprimento do Circuito	= 5 m							
$\Delta \mathbf{U} = \sqrt{3} \times 9.3 \times 5 \times 0.98$	$\Delta U = 0, \epsilon$ $\Delta \% =$	= ΔU x 100	$\Delta\% = 0.16$							
56 x 4		380	Δ70 – 0, 10							
Proteção do Circuito	I proteção = 9,3	3 x 1,1	I proteção = 10,23 A							
Resumo: Cabo	o: 4 mm² Dis	juntor Adotado : 16 A/	380V / 5 kA(Monopolar)							

tpfe.com.br

92

CIRCUITO 8 – CENTRAL DE ÓLEODINÂMICA

Caracteristicas do Circuito

Tensão = 380 V	Fator de l	Potência = 0,98	lcc = 5 k/	Δ				
Fatores de Correção	T ator ao i	0.000	100 - 0 10					
Nº de Cond. Carregados = 3			Nº de Circ. Agrupados = 1					
Isolação = EPR ou XLPE			Classe de Tensão					
Fator de Agrupamento (f) = 1	,1		Método de Instalação	= B1				
			Fator de Temperatura (F	-t) 0,91				
Caba Adatada 4			Capacidade de Condução	= 48 A				
Cabo Adotado = 4	mm²		Capacidade de Condução Corrigida	= 48 A				
Potência do Circuito (W)								
Qtd.	Esp	ecificação	Pot. (W)	Total				
1	Pinel T	elecon DGO	11040	11040 W				
				11040 W				
Corrente do Circuito (Ic)								
Corr	ente Nomina	ıl (ln)	Corrente de Partida (Ip)					
In=	11040	ln = 22,84 a	lp= ln x (p/l	n)				
√3 x 380	0 x 0,83 x 0,88	5	lp=27,61 x 8,3=229,16 A					
lc= (ln*Fs) / (ft*Fa)		lc=27,61 A	lp(lss)=229,16 / 3	/=76,39 A				
Queda de Tensão (ΔU)			Comprimento do Cir	rcuito = 5 m				
$\Delta U = \sqrt{3} \times 27,61 \times 30 \times 0,83$	∆U = 9,8 V	•	Δ % = Δ U x 100	Δ% =2,58%				
56 x 2,5			220	Δ70 -2,3070				
Proteção do Circuito				_				
	l proteç	ão = 9,3 x 1,1		I proteção = 30,37 A				
ur	ntor Adotado:	25 A / 380 / 5 Ka	(tripi					
Resumo:	Cabo: 6 mm	² Di	sjuntor Adotado : 25 A / 380V / 5 kA	(Tripolar)				

<u>CIRCUITO 9 – MONOVIA</u>

Caracteristicas do Circuito

Tensão = 380 V	Fator de P	otência = 0,8	lcc = 5	kA		
Fatores de Correção						
Nº de Cond. Carregados = 3			Nº de Circ. Agrupado	os = 1		
Isolação = Isolado PVC			Classe de Tensâ	io = 750 V		
Fator de Agrupamento (f) = 1	1		Método de Instalaçã	io = B1		
Caba Adatada 4			Capacidade de Conduçã	io = 24 A		
Cabo Adotado = 4	mm²		Capacidade de Condução Corrigio	da = 28 A		
Potência do Circuito (W)						
Qtd.	Espe	cificação	Pot. (W)	Total		
1	Monovia (T	alha Elétrica)	7500	7500 W		
				7500 W		
Corrente do Circuito (lc)	lc =	7500 √3x380 x 0,8	lc = 14,24	4 A		
Queda de Tensão (ΔU)		,	Comprimento do C	ircuito = 5 m		
$\Delta U = \sqrt{3} \times 14,24 \times 5 \times 0,8$	$\Delta U = 0.76 V$		Δ % = Δ U x 100	.0/ 0.0		
56 x 4			380	$\Delta\% = 0.2$		
Proteção do Circuito		l proteçã	ção = 114,24 x 1,1 I proteção = 15			
Resumo: Cabo : 4 mm² Disjuntor Adotado : 16 A / 220V / 5 kA (Monopolar)						

tpfe.com.br

93

Rua Irene Ramos de Matos,176 51011-530 - Recife Fone: +55 81 3316-0700 CNPJ 12285.441/0001-66

<u>CIRCUITO 10 – ILUMINAÇÃO INTERNA E EXTERNA</u>

Caracteristicas do Circuito

Tensão = 220 V		Fator de Potência	Fator de Potência = 0,95						
Fatores de Correção									
Nº de Cond. Carregados = 2	2		Nº de Circ. Agrupados =	1					
Isolação = Isolado PVC			Classe de Tensão = 750	V					
Fator de Agrupamento (f) =	1		Método de Instalação = B	51					
Cabo Adotado = 2,5 mm²		Capacidade de Condução = 24 A Capacidade de Condução Corrigida = 24 A							
Potência do Circuito (W)									
Qtd.		Especificação	Pot. (W)	Total					
5		Projeto LED 100W	100	500 W					
				500 W					
Corrente do Circuito (lc)		Ic = 500 220 x 0,95	- Ic	:=2,63 A					
Queda de Tensão (ΔU)		Comprii	mento do Circuito = 5 m	 I					
$\mathbf{U} = 2 \times 2,63 \times 5 \times 0,95$	$\Delta U = 0.18V$		A0/ - 0.00						
56 x 2,5			$\Delta\% = 0.08$						
Proteção do Circuito		l proteção :	l proteção = 2,9 A						
Resumo: Cabo: 2,5 mm ² Disjuntor Adotado: 10 A / 220V / 5 kA (Mono									

CIRCUITO 11 - TOMADAS (TUG'S)

Caracteristicas do Circuito

Resumo: Cabo: 2,5 mm ² Disjuntor Adotado: 10 A/220V/5 kA (Monopolar)							
Proteção do Circuito		l proteção =	: 2,94 x 1,1	I proteção = 3,24 A			
56 x 2,	- 5		220	$\Delta\% = 0.08$			
$\Delta U = 2 \times 2,94 \times 5 \times 0,95$	$\Delta U = 0.18 V$		Δ % = Δ U x 100	40/ - 0.00			
Queda de Tensão (ΔU)			Comprimento do (Circuito = 5 m			
Corrente do Circuito (Ic) Ic =	250 220 x 0,85	lc = 2,9	4 A			
				500 W			
2	Tomada de us	so Geral (TUG)	500 W				
Qtd.	Especi	ificação	Pot. (W)	Total			
Potência do Circuito (W)							
Cabo Adolado = 2	2,5 1111112		Capacidade de Condução C	orri 24 A			
Cabo Adotado = 2	2.5 mm²		Capacidade de Condução	0 = 24 A			
Fator de Agrupamento (f) =	: 1		Método de Instalação	o = B1			
Isolação = Isolado PVC			Classe de Tensão	o = 750 V			
Nº de Cond. Carregados =	2		Nº de Circ. Agrupado:	s = 1			
Fatores de Correção							
Tensão = 220 V	Fator de Po	tência = 0,85	lcc = 5	kA			

tpfe.com.br

94

Rua Irene Ramos de Matos,176 51011-530 - Recife Fone: +55 81 3316-0700 CNPJ 12285.441/0001-66

5.12.2.4 - Dimensionamento Malha de Aterramento e SPDA

O Projeto foi elaborado com base nas seguintes normas técnicas e recomendações:

- NBR 5410-2004 Instalações Elétricas de Baixa Tensão;
- NBR-5419 Proteção de Estruturas Contra Descargas Atmosféricas;
- NBR 5471 Condutores Elétricos:
- Complementada com esta Memória de Cálculo.

SISTEMA DE ATERRAMENTO

O condutor da malha de terra é dimensionado considerando os esforços térmicos e mecânicos que pode suportar. Tem-se que verificar também se o cabo poderá suportar os esforços de compressão e cisalhamento.

Para fazer o dimensionamento térmico do condutor da malha é utilizada a fórmula abaixo, que é válida somente para cabos de cobre e considera o calor produzido pela corrente de curto-circuito totalmente restrito ao condutor.

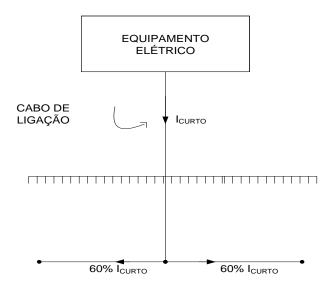
$$I = 226,53 \cdot S_{cobre} \cdot \sqrt{\frac{1}{t_{defeito}} \cdot \ln\left(\frac{\theta_m - \theta_a}{234 + \theta_a} + 1\right)}$$

Sendo:

S_{cobre}→ Secção do condutor de cobre da malha de terra em mm²;

I→ Corrente de defeito em Ampères, através do condutor;

t_{defeito}→Duração do defeito em segundos;


θa→Temperatura Ambiente em °C;

θ_m→Temperatura máxima permissível em °C.

Para condutores de cobre, o valor de θ m é limitado pelo tipo de conexão adotado e a utilizada no projeto é a conexão Solda Exotérmica, conhecida como aluminotermia, cuja conexão é feita pela fusão obtida pela ignição e combustão dos ingredientes no cadinho. Neste caso a temperatura máxima é de θ m =850°C.

Para o dimensionamento do condutor da malha ou do cabo de ligação que interliga os equipamentos a serem aterrados à malha, deve-se considerar a corrente de defeito de acordo com a figura apresentada a seguir.

CABO DE MALHA

A conexão do cabo de ligação a malha, geralmente é feito no ponto mais próximo à malha, dividindo o segmento do lado da quadrícula em duas partes. A corrente de curto divide-se em 50% para cada lado, mas para o dimensionamento, a corrente a ser utilizada na expressão terá um acréscimo de 10%, e a corrente de curto a ser empregada será corrente máxima de curto fase-terra, isto é:

- I_{defeito} condutor da malha=60% I_{curto} máximo
- I_{defeito} condutor da malha=60%x 10.000A
- I_{defeito} condutor da malha=6.000A

CONDUTOR DA MALHA:

$$I = 226,53 \cdot S_{cobre} \cdot \sqrt{\frac{1}{t_{defeito}} \cdot \ln \left(\frac{\theta_m - \theta_a}{234 + \theta_a} + 1 \right)}$$

$$6.000 = 226,53 \cdot S_{cobre} \cdot \sqrt{\frac{1}{0,5} \cdot \ln\left(\frac{850 - 40}{234 + 40} + 1\right)}$$

$$S_{cobre} = 15,97 mm^2$$

Condutor Adotado: 50 mm²

5.13 - DIMENSIONAMENTO DO VERTEDOURO

O vertedouro da Barragem Frecheirinha foi projetado com base nas informações dos estudos hidrológicos e, principalmente, nas condições geotécnicas do subsolo do local, o qual estará localizado na ombreira direita, afastado cerca de 470m do maciço da barragem.

O eixo longitudinal do canal vertedouro possui uma extensão de 509,49 m, estando estaqueado de 20 em 20 metros. As estacas estão nomeadas em metros.

O canal de aproximação do vertedouro será escavado na cota 129,00 m, com largura de base de 60,00 m, com muro vertical na cota 134,00 m (mesma cota do coroamento da barragem) no entorno do creager que tem crista na cota 131,00 m. O canal de restituição do vertedouro preserva a mesma largura, é revestido com laje em concreto armado, com sistema de drenagem profundo para alívio da subpressão e ancorada na ardósia por chumbadores, além de muro lateral com altura variável até o final da bacia de dissipação. O canal final que conduz a água do vertedouro até o riacho Caiçara será escavado no solo e não possui revestimento.

A metodologia utilizada para o cálculo dos parâmetros geométricos da seção do vertedouro é apresentada conforme os elementos da **Figura 5.10** a seguir (Design of Small Dams-USBR):

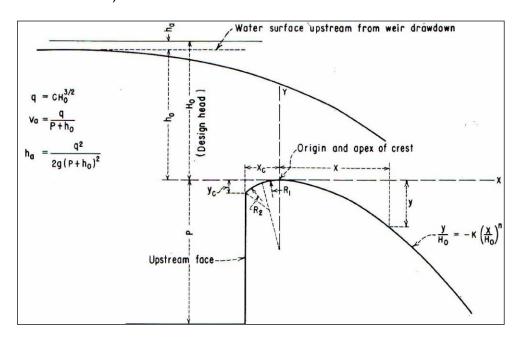


Figura 5.10 – Cálculo dos Parâmetros Geométricos do Creager (USBR)

5.13.1 - CÁLCULO DO COEFICIENTE DE DESCARGAS

q = Q/L (Q: vazão e L: largura do vertedouro)

Vazão específica de projeto: q = 2,457 m³/s.m (cheia decamilenar)

 $Q=Cm\times LH^{3/2}\Rightarrow Cm=\sqrt{0,3048}\times Co,$ transformação do coeficiente para o sistema métrico.

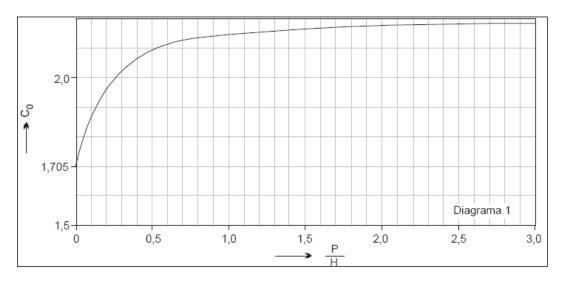


Figura 5.11 – Gráfico com Coeficiente de Descarga (C0) no Sistema Métrico

(Retirado da Figura 9.23, Pág. 370 do Design of Small Dams-USBR)

$$\frac{P}{H} = \frac{2.0}{1.11} = 1.80 \Rightarrow \text{Co} = 2.175 \Rightarrow \Rightarrow \text{Co} = 2.10)$$
 \Rightarrow a

adoção deste valor mais conservador, corresponde a uma redução de 3,45% na vazão calculada.

5.13.2 - CÁLCULO DA PERDA DE CARGA NO CANAL DE APROXIMAÇÃO

$$L = L' - 2(n.Kp + Ka) . H$$

Onde:

L = Largura efetiva (m)

L' = Largura efetiva (L' = 60,00m)

n = número de pilares

Kp = coeficiente de forma, localização e esbeltez do pilar;

Ka = coeficiente de geometria da aproximação e ângulo formado entre o muro de aproximação e o escoamento;

H = carga sobre a soleira.

Como não existem pilares na estrutura, **n=0**. Logo a equação da largura efetiva fica igual a:

$$L = L' - 2 \cdot Ka \cdot H$$

Considerando Ka igual a 0,20, conforme critérios estabelecidos no *Design of Small Dams-USBR, Página 368*, têm-se:

$$L = 60,00 - 2.0,20.1,11 \rightarrow L = 59,56m$$

Ou seja, uma perda de carga no canal de aproximação de **0,47m** (ou 0,78%), relativamente pequena e minimizada pelo coeficiente de escoamento real da soleira calculado anteriormente, além da folga para cheia decamilenar ser de 1,89m, ou seja, 1,39m superior à folga mínima comumente utiliza, que é de 0,50m.

5.13.3 - CHEIAS MILENAR E DECAMILENAR

Quadro 5.8 - Cheias Milenar e Decamilenar

Cheia	Milenar	Decamilenar			
Largura do Vertedouro Creager	L=60m				
Cheia Afluente	912,21 m³/s	1.118,10 m³/s			
Cheia Efluente	111,96 m³/s	147,42 m³/s			
Cota da Soleira do Vertedouro	131,00 m	131,00 m			
Cota de Fundo do Canal de Aproximação	129,00 m	129,00 m			
Cota operacional	131,92 m	132,11 m			
Lâmina	0,92 m	1,11 m			
Amortecimento	87,7%	86,8%			

5.13.4 - VELOCIDADE DE APROXIMAÇÃO (VA)/CARGA CINÉTICA (HA)

$$P + Ho = (P + ho) + ha$$
, onde : $ha = va^2 / 2g$

mas, va =
$$Q/A = Q/L(P+ho) = qL/L(P+ho)$$

$$va = q / P + ho$$
, $logo$

$$ha = q^2 / 2g(P+ho)^2$$

Dados:

P = 2 m

 $Ho = 1.11 \, m$

 $q = Q/L = 2.457 \text{ m}^3/\text{s.m}$

Arbitrando-se valores a ho, define-se a igualdade de (I)

(P+Ho)= 3.11 m

Quadro 5.9 - Parâmetro de Cálculo do Creager

Interações	ha (m)	q (m³/s/m)	P (m)	h0 (m)	Va (m/s)	P+h0 (m)	H0 (m)
1	0,034	2,457	2,000	1,000	0,819	3,000	1,034
2	0,034	2,457	2,000	1,010	0,816	3,010	1,044
3	0,034	2,457	2,000	1,020	0,814	3,020	1,054
4	0,034	2,457	2,000	1,030	0,811	3,030	1,064
5	0,033	2,457	2,000	1,040	0,808	3,040	1,073
6	0,033	2,457	2,000	1,050	0,806	3,050	1,083
7	0,033	2,457	2,000	1,060	0,803	3,060	1,093
8	0,033	2,457	2,000	1,070	0,800	3,070	1,103
9	0,032	2,457	2,000	1,080	0,798	3,080	1,112
10	0,032	2,457	2,000	1,090	0,795	3,090	1,122
11	0,032	2,457	2,000	1,100	0,793	3,100	1,132
12	0,032	2,457	2,000	1,110	0,790	3,110	1,142
13	0,032	2,457	2,000	1,120	0,788	3,120	1,152
14	0,031	2,457	2,000	1,130	0,785	3,130	1,161
15	0,031	2,457	2,000	1,140	0,782	3,140	1,171
16	0,031	2,457	2,000	1,150	0,780	3,150	1,181
17	0,031	2,457	2,000	1,160	0,778	3,160	1,191
18	0,031	2,457	2,000	1,170	0,775	3,170	1,201

Resultados:

va = 0.798 m/s

ha = 0.032 m

ho = 1,08 m

5.13.5 - PARÂMETROS GEOMÉTRICOS DE ENTRADA NOS ÁBACOS

ha/Ho= **0,029**

Inclinação da face de montante: Vertical

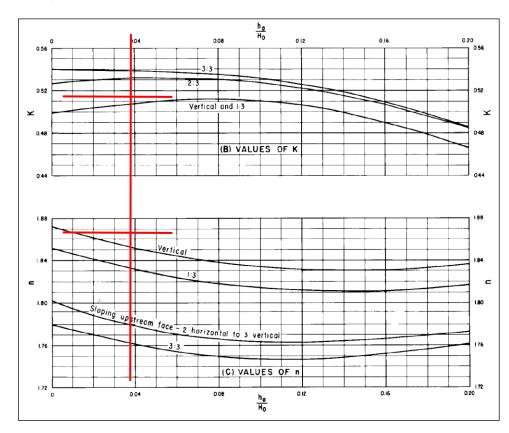


Figura 5.12 - Parâmetro Geométricos K e n de Cálculo do Creager

Coeficientes de saída dos ábacos da Figura 5.13:

Xc/Ho = 0,268

Yc/Ho= 0,114

R1/Ho= 0,513

R2/Ho = 0,213

k = 0,505

n = 1,856

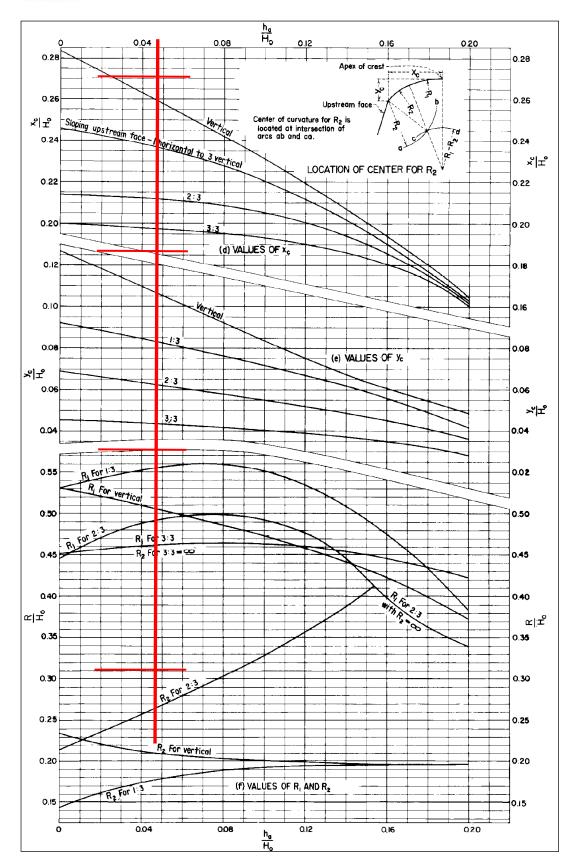


Figura 5.13 – Parâmetro Geométricos Xc, Yc, R1 e R2 de Cálculo do Creager

5.13.6 - COORDENADAS DO PONTO C

Xc = 0.298 m; Yc = 0.127 m

5.13.7 - RAIOS DOS CÍRCULOS A MONTANTE DA CRISTA

$$R1 = 0.571 \text{ m}$$
; $R2 = 0.237 \text{ m}$

Sendo a exponencial de jusante definida pela expressão:

$$\frac{Y}{Ho} = -k(\frac{X}{Ho})^n,$$

Esta torna-se:

$$Y = -0.461(X)^{1.856}$$
 (I)

Determinação do ponto T - interseção Exponencial/Reta

Arbitrar o coeficiente angular da reta entre T E B

$$dX/dY = 1.4$$

Derivar a equação da exponencial entre 0 e T , equação (I)

$$dY/dX = -0.856$$
 (X)^{0.856} (II)

Declividade da reta

$$dY/dX = -1/1,4$$
 (III)

Igualando-se (II) e (III), tem-se:

Xt = 0.809 m

que substituindo em (I), resulta

Yt = -0.311 m

O ponto T (Xt; Yt) é o final da soleira propriamente dita, perfil Creager, em forma de ogiva.

5.13.8 - PONTO DE ORIGEM DA CURVA CIRCULAR - PONTO B

Ponto de origem da curva circular na junção base do muro/ fundo do canal - ponto **B**

Equação da reta

$$X - Xt = dY/dX (Y - Yt)$$

 $X = -1,4 Y + 1,244$ (VI)

Raio mínimo da curva reversa

 $R > 0.3048(10)^{x}$, onde:

$$x = \frac{3,291 \rightleftharpoons (v + 6,4H) + 16}{11,85H + 64}$$

Sendo

H = 1,34 m (Topo da soleira - Superfície da água dentro do canal)

$$v = (2gH)^{1/2} = 5,13 \text{ m/s}$$

$$x = 0.765$$

$$R$$
 , 1,774 m $R_{ADOTADO} = 3 \text{ m}$

Quadro 5.10 - Coordenadas da soleira do vertedouro

Х	Y	Pontos	Cota (m)	
-0,298	-2,000	PÉ	129,000	
-0,298	-0,127	Ponto C	130,873	
0,000	0,000	0	131,000	
0,100	-0,006	1	130,994	
0,200	-0,023	2	130,977	
0,300	-0,049	3	130,951	
0,400	-0,084	4	130,916	
0,500	-0,127	5	130,873	
0,600	-0,179	6	130,821	
0,800	-0,305	7	130,695	
1,000	-0,461	8	130,539	
1,200	-0,647	9	130,353	
1,500	-0,978	10	130,022	
1,800	-1,372	11	129,628	
2,100	-1,827	12	129,173	

Para a concordância da soleira de jusante com o canal de restituição foi definida uma curva circular de raio R igual a 3,00m, definida a partir da cota 126,04 até a cota 125,00, com uma projeção horizontal de 1,62m.

5.13.9 - DO CANAL DE APROXIMAÇÃO

O Canal de Aproximação deve ser construído em seção trapezoidal escavada em rocha com fundo horizontal na cota (129,00) e uma largura de 60m com taludes laterais inclinado (H:V) 1,5:1.

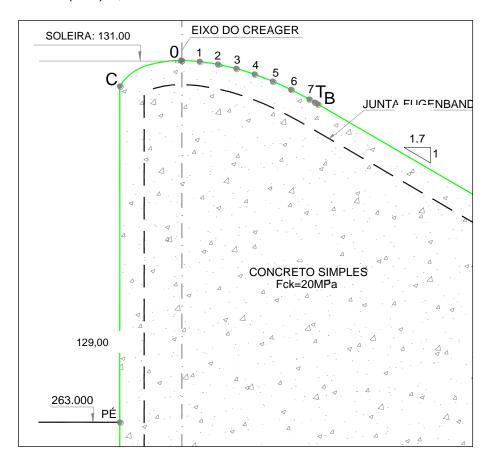


Figura 5.14 - Coordenadas dos Pontos do Perfil Creager

5.13.10 - CÁLCULOS HIDRÁULICOS DO CANAL RÁPIDO

Este canal se inicia na cota (125,00), estende-se por 169,00m, com declividade igual a 10,00% e termina na cota (108,06m), com largura constante igual a 60,00m. O final do Canal de Descarga coincide com o início da Bacia de Dissipação.

No Canal de Descarga, para a vazão efluente decamilenar de 147,42 m³/s, estabelece-se um escoamento do tipo supercrítico. Para o cálculo da linha d'água deste escoamento procedeu-se à construção da curva de remanso estabelecida, de montante para jusante, dada a natureza do escoamento.

Os cálculos, conforme demonstrados nos quadros a seguir, foram realizados para Coeficiente de Manning n=0,015. As alturas iniciais foram calculadas para Equação da Continuidade a partir das vazões e das alturas de vertimento.

O **Quadro 5.11** mostra o cálculo da linha d'água e linha de energia, além das cotas dos NA's para a vazão decamilenar igual a 147,42m³/s. A **Figura 5.15** apresenta o gráfico com os perfis das linhas d'água e de energia.

Quadro 5.11 - Cálculo da Curva de Remanso do Canal Rápido

	n	l _o (m/m)	Q (m³/s)	b (m)	Z	y (m)	yinicial (m)								
	0,015	0,1000	147,42	0,00	0,00	-0,005	0,50								
y (m)	y _{med} (m)	A (m2)	E (m)	ΔE (m)	Rh (m)	A*Rh ^(2/3)	If (m/m)	Δx (m)	V (m/s)	Fr (m/s)	x (m)	y (m)	Cota Fundo (m)	Cota NA (m)	Cota Energia (m)
0,50		30,00	1,732								0,00	0,50	125,00	125,50	126,73
0,50	0,4975	29,70	1,752	0,02001	0,489	18,54	0,01423	0,23	4,96	2,25	0,23	0,50	124,98	125,48	126,73
0,49	0,4925	29,40	1,773	0,02078	0,485	18,23	0,01471	0,24	5,01	2,29	0,48	0,49	124,95	125,44	126,72
0,49	0,4875	29,10	1,794	0,02159	0,480	17,92	0,01522	0,25	5,07	2,32	0,73	0,49	124,93	125,42	126,72
0,48	0,4825	28,80	1,817	0,02242	0,475	17,62	0,01575	0,27	5,12	2,36	1,00	0,48	124,90	125,38	126,72
0,48	0,4775	28,50	1,840	0,02329	0,470	17,32	0,01630	0,28	5,17	2,40	1,28	0,48	124,87	125,35	126,71
0,47	0,4725	28,20	1,864	0,02420	0,465	17,02	0,01688	0,29	5,23	2,43	1,57	0,47	124,84	125,31	126,70
0,47	0,4675	27,90	1,889	0,02515	0,460	16,72	0,01749	0,30	5,28	2,47	1,87	0,47	124,81	125,28	126,70
0,46	0,4625	27,60	1,916	0,02613	0,455	16,43	0,01812	0,32	5,34	2,51	2,19	0,46	124,78	125,24	126,70
0,46	0,4575	27,30	1,943	0,02717	0,451	16,13	0,01878	0,33	5,40	2,56	2,53	0,46	124,75	125,21	126,69
0,45	0,4525	27,00	1,971	0,02824	0,446	15,84	0,01948	0,35	5,46	2,60	2,88	0,45	124,71	125,16	126,68
0,45	0,4475	26,70	2,000	0,02937	0,441	15,55	0,02021	0,37	5,52	2,64	3,24	0,45	124,68	125,13	126,68
0,44	0,4425	26,40	2,031	0,03055	0,436	15,27	0,02098	0,39	5,58	2,69	3,63	0,44	124,64	125,08	126,67
0,44	0,4375	26,10	2,063	0,03178	0,431	14,98	0,02178	0,41	5,65	2,73	4,04	0,44	124,60	125,04	126,66
0,43	0,4325	25,80	2,096	0,03307	0,426	14,70	0,02263	0,43	5,71	2,78	4,46	0,43	124,55	124,98	126,65
0,43	0,4275	25,50	2,130	0,03443	0,421	14,42	0,02352	0,45	5,78	2,83	4,92	0,43	124,51	124,94	126,64
0,42	0,4225	25,20	2,166	0,03584	0,417	14,14	0,02445	0,47	5,85	2,88	5,39	0,42	124,46	124,88	126,63
0,42	0,4175	24,90	2,203	0,03733	0,412	13,86	0,02544	0,50	5,92	2,93	5,89	0,42	124,41	124,83	126,61
0,41	0,4125	24,60	2,242	0,03888	0,407	13,59	0,02647	0,53	5,99	2,99	6,42	0,41	124,36	124,77	126,60
0,41	0,4075	24,30	2,283	0,04052	0,402	13,32	0,02757	0,56	6,07	3,04	6,98	0,41	124,30	124,71	126,58
0,40	0,4025	24,00	2,325	0,04224	0,397	13,05	0,02872	0,59	6,14	3,10	7,57	0,40	124,24	124,64	126,57
0,40	0,3975	23,70	2,369	0,04404	0,392	12,78	0,02993	0,63	6,22	3,16	8,20	0,40	124,18	124,58	126,55
0,39	0,3925	23,40	2,415	0,04594	0,387	12,52	0,03122	0,67	6,30	3,22	8,87	0,39	124,11	124,50	126,53
0,39	0,3875	23,10	2,463	0,04794	0,383	12,25	0,03257	0,71	6,38	3,28	9,58	0,39	124,04	124,43	126,50
0,38	0,3825	22,80	2,513	0,05004	0,378	11,99	0,03401	0,76	6,47	3,35	10,34	0,38	123,97	124,35	126,48
0,38	0,3775	22,50	2,565	0,05226	0,373	11,73	0,03552	0,81	6,55	3,42	11,15	0,38	123,89	124,27	126,46
0,37	0,3725	22,20	2,620	0,05460	0,368	11,48	0,03713	0,87	6,64	3,49	12,02	0,37	123,80	124,17	126,42
0,37	0,3675	21,90	2,677	0,05706	0,363	11,22	0,03883	0,93	6,73	3,56	12,95	0,37	123,71	124,08	126,39
0,36	0,3625	21,60	2,737	0,05967	0,358	10,97	0,04064	1,01	6,83	3,63	13,95	0,36	123,60	123,96	126,34
0,36	0,3575	21,30	2,799	0,06242	0,353	10,72	0,04255	1,09	6,92	3,71	15,04	0,36	123,50	123,86	126,30

	n	I _o (m/m)	Q (m³/s)	b (m)	Z	y (m)	yinicial (m)								
	0,015	0,1000	147,42	0,00	0,00	-0,005	0,50								
y (m)	y _{med} (m)	A (m2)	E (m)	ΔE (m)	Rh (m)	A*Rh ^(2/3)	If (m/m)	Δx (m)	V (m/s)	Fr (m/s)	x (m)	y (m)	Cota Fundo (m)	Cota NA (m)	Cota Energia (m)
0,35	0,3525	21,00	2,864	0,06533	0,348	10,47	0,04459	1,18	7,02	3,79	16,22	0,35	123,38	123,73	126,24
0,35	0,3475	20,70	2,933	0,06841	0,344	10,23	0,04675	1,28	7,12	3,87	17,50	0,35	123,25	123,60	126,18
0,34	0,3425	20,40	3,004	0,07167	0,339	9,98	0,04906	1,41	7,23	3,96	18,91	0,34	123,11	123,45	126,11
0,34	0,3375	20,10	3,080	0,07513	0,334	9,74	0,05151	1,55	7,33	4,05	20,46	0,34	122,95	123,29	126,03
0,33	0,3325	19,80	3,158	0,07880	0,329	9,50	0,05413	1,72	7,45	4,14	22,18	0,33	122,78	123,11	125,94
0,33	0,3275	19,50	3,241	0,08269	0,324	9,27	0,05692	1,92	7,56	4,23	24,10	0,33	122,59	122,92	125,83
0,32	0,3225	19,20	3,328	0,08684	0,319	9,04	0,05990	2,17	7,68	4,33	26,26	0,32	122,37	122,69	125,70
0,32	0,3175	18,90	3,419	0,09124	0,314	8,80	0,06309	2,47	7,80	4,44	28,73	0,32	122,13	122,45	125,55
0,31	0,3125	18,60	3,515	0,09594	0,309	8,58	0,06650	2,86	7,93	4,54	31,60	0,31	121,84	122,15	125,36
0,31	0,3075	18,30	3,616	0,10094	0,304	8,35	0,07016	3,38	8,06	4,66	34,98	0,31	121,50	121,81	125,12
0,30	0,3025	18,00	3,722	0,10629	0,299	8,12	0,07408	4,10	8,19	4,77	39,08	0,30	121,09	121,39	124,81
0,30	0,2975	17,70	3,834	0,11199	0,295	7,90	0,07830	5,16	8,33	4,90	44,24	0,30	120,58	120,88	124,41
0,29	0,2925	17,40	3,952	0,11809	0,290	7,68	0,08283	6,88	8,47	5,02	51,12	0,29	119,89	120,18	123,84
0,29	0,2875	17,10	4,077	0,12463	0,285	7,47	0,08771	10,14	8,62	5,16	61,26	0,29	118,87	119,16	122,95
0,28	0,2825	16,80	4,209	0,13164	0,280	7,25	0,09297	18,73	8,78	5,29	80,00	0,28	117,00	117,28	121,21
0,28	0,2775	16,50	4,348	0,13916	0,275	7,04	0,09865	103,38	8,93	5,44	183,38	0,28	106,66	106,94	111,01

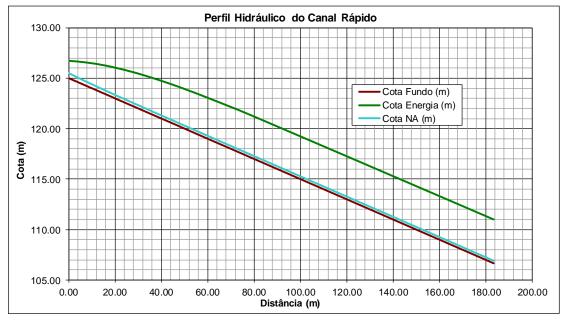


Figura 5.15 - Perfil Hidráulico do Canal de Descarga para Q= 987,39 m³/s

5.13.11 - DA BACIA DE DISSIPAÇÃO

Com base na curva-chave do rio Caiçara, calculada no item anterior, no final do canal do vertedouro prevê-se a execução de uma bacia de dissipação de modo a assegurar que no trecho de restituição das vazões a jusante - que será mantido nas

condições naturais, provavelmente num nível superficial composto por formações aluvionares - as velocidades de circulação sejam moderadas.

A dissipação de energia será feita através da bacia de dissipação por ressalto hidráulico, com extensão de 30,05m e fundo à cota 108,06 m.

A altura da entrada (y1) na Bacia de Dissipação e a respectiva altura conjugada (y2) do ressalto hidráulico que se forma, foram:

- $Q = 147,42 \text{ m}^3/\text{s}$
 - Largura = 60,00 m
 - n= 0,015
 - \rightarrow y₁ = 0,28m e y₂ = 1,96m

Profundidade jusante Y2 (m)	1.9
Perda de carga (m)	2.10
Comprimento do ressalto (m)	11.0
Velocidade a montante (m/s)	8.79
Velocidade a jusante (m/s)	1.29
Núm. de Froude a montante	5.29
Núm. de Froude a jusante	0.29
Profundidade crítica (m)	0.8

Figura 5.16 – Parâmetros de Cálculo da Bacia de Dissipação e Ressalto Hidráulicos

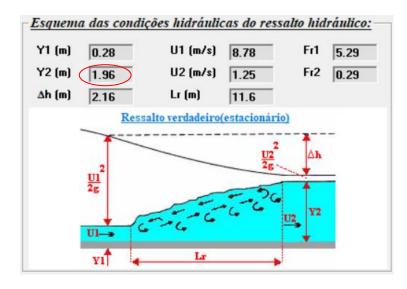


Figura 5.17 – Resultados dos Cálculo da Bacia de Dissipação e Ressalto Hidráulico

tpfe.com.br

Rua Irene Ramos de Matos,176 51011-530 - Recife Fone: +55 81 3316-0700 CNPJ 12285.441/0001-66

Para definição da cota da bacia de dissipação foi utilizada a metodologia descrita no Livro Design Of Small Dams do Bureal Of Reclamation dos Estados Unidos da América, a qual consiste na camporação de curvas de vazões por alturas (cotas) conjugadas (2), elaboradas a partir de cotas fixadas na bacia e finalmente comparadas à curva-chave do rio. (VER CURVA-CHAVE DO RIO CAIÇARA EM ANEXO)

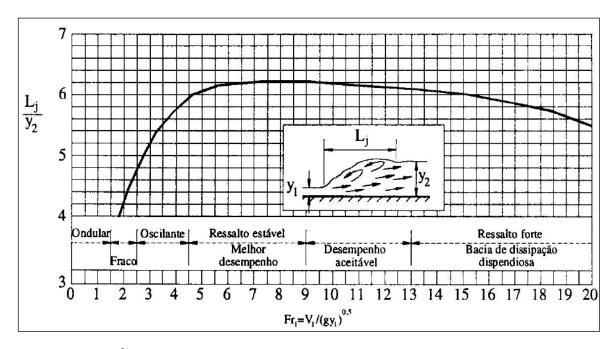


Figura 5.18 – Ábaco Para Cálculo da Bacia de Dissipação e Ressalto Hidráulico (USBR)

Do ábaco acima é possível calcular o comprimento do ressalto em função do número de Froude para seções retangulares.

$$L_i / Y_2 = 6.05 \rightarrow L_i = 6.05 \times 1.96 = 11.86 \text{ m}$$

Finalmente, adotou-se o comprimento da bacia de dissipação igual a 30,00m, projetada em concreto armado, com um "end sill" (soleira de saída) com altura igual a 0,50m.

Na saída da bacia de dissipação está prevista enrocamento para evitar erosões regressivas no pé da bacia. Este enrocamento tem espessura de 1,00m numa extensão de 17,00 m.

tpfe.com.br

ENGENHARIA

5.13.12 - VERIFICAÇÃO DA ALTURA DOS MUROS LATERAIS DA BACIA DE DISSIPAÇÃO E RÁPIDO

Para a Bacia de Dissipação recomenda-se adotar o critério de considerar uma folga de, pelo menos, 0,50 m em relação ao nível d'água máximo a jusante correspondente à vazão decamilenar. Desta forma sugere-se considerar o topo do muro na cota 147,42 m.

Já para o rápido recomenda-se utilizar borda livre preconizada pelo U.S. Bureau of Reclamation, expressa pela fórmula abaixo em unidades métricas:

Freeboard = $0.61 + 0.0371 \text{ V}^{+1/3}$

Onde V é velocidade do fluxo e H o tirante hidráulico correspondente.

Para o caso da chegada do rápido na bacia tem-se V = 8,93 m/s e H = 0,28m, correspondendo a um Freeboard de cerca de 2,72 m (altura do muro adotado igual a 1,00 m, ou seja, o Freeboard é igual a 0,72m). Nesse caso deverá ser feita a concordância entre as elevações do muro na bacia de dissipação e na chegada do rápido adotando-se a maior cota.

5.13.13 - DIMENSIONAMENTO DOS CHUMBADORES

Para o dimensionamento dos chumbadores foi considerado a água no nível normal, ou seja, cota 131,00 e saturação do maciço de jusante.

A carga máxima é de $3.0tf/m^2$. A malha entre os chumbadores é de 2.0m x 2.0m, portanto, a carga máxima no chumbador é de 15.00tf.

A capacidade do chumbador é dada pela expressão:

$$F = \pi \times D_d \times L_S \times |C' + (\gamma \times h + \Delta P) \times tg\varphi|,$$

conhecida como fórmula brasileira de (Nunes 1987).

F = capacidade de carga do Bulbo;

 D_d = diâmetro da escavação = 0,10m

 L_S = comprimento do bulbo = 5,50m

tpfe.com.br

C' = adesão entre calda e solo, tomada igual à coesão efetiva do solo = $10tf/m^2$

 $\gamma = \text{massa específica do terreno} = 1,8tf/m^3$

h = profundidade do centro do bulbo = 2,75m

 $\varDelta P=$ parcela de aumento de pressão normal devido à pressão residual de injeção no caso de chumbadores $\varDelta P=0.0$

 φ = ângulo de atrito real do solo = 38°

Aplicando na expressão, temos:

$$F = \pi \times 0.10 \times 5.50 \times [10 + 1.80 \times 2.75 \times tg38^{\circ}]$$

 $F = 23.96 \Rightarrow OK!$

6 - QUANTITATIVOS DO PROJETO

113

6 - QUANTITATIVOS DO PROJETO

No intuito de compor o orçamento para execução da obra, foram levantadas todas as quantidades necessárias à execução da obra. Estas quantidades foram determinadas a partir dos desenhos do projeto. Apresentamos a seguir as planilhas com o resumo e o cálculo de quantidades, e as planilhas com o cálculo de movimento de terra, proteção com brita, pedra e outros.

tpfe.com.br

	QUADRO DE CUBAÇÃO - LIMPEZA					
Estaca	Est. Acum.	Área	Vol. Parcial (m³)	Vol. Acum.(m³)		
0+0,00	0,00	0,000	0,000	0,000		
1+0,00	20,00	0,000	0,000	0,000		
2+0,00	40,00	40,740	407,400	407,400		
3+0,00	60,00	68,842	1095,820	1503,220		
4+0,00	80,00	158,001	2268,430	3771,650		
5+0,00	100,00	501,818	6598,190	10369,840		
6+0,00	120,00	603,599	11054,170	21424,010		
7+0,00	140,00	725,810	13294,090	34718,100		
8+0,00	160,00	694,415	14202,250	48920,350		
9+0,00	180,00	481,430	11758,450	60678,800		
10+0,00	200,00	615,132	10965,620	71644,420		
11+0,00	220,00	726,774	13419,060	85063,480		
12+0,00	240,00	799,613	15263,870	100327,350		
13+0,00	260,00	508,370	13079,830	113407,180		
14+0,00	280,00	574,446	10828,160	124235,340		
15+0,00	300,00	403,801	9782,470	134017,810		
16+0,00	320,00	256,469	6602,700	140620,510		
17+0,00	340,00	182,923	4393,920	145014,430		
18+0,00	360,00	210,037	3929,600	148944,030		
19+0,00	380,00	484,205	6942,420	155886,450		
20+0,00	400,00	536,029	10202,340	166088,790		
21+0,00	420,00	511,817	10478,460	176567,250		
22+0,00	440,00	490,288	10021,050	186588,300		
23+0,00	460,00	466,244	9565,320	196153,620		
24+0,00	480,00	393,614	8598,580	204752,200		
25+0,00	500,00	199,575	5931,890	210684,090		
26+0,00	520,00	239,092	4386,670	215070,760		
27+0,00	540,00	276,877	5159,690	220230,450		
28+0,00	560,00	244,810	5216,870	225447,320		
29+0,00	580,00	217,785	4625,950	230073,270		
30+0,00	600,00	122,985	3407,700	233480,970		
31+0,00	620,00	0,000	1229,850	234710,820		
32+0,00	640,00	0,000	0,000	234710,820		
	Total Volume (m³) 234710,820					

	QUADRO DE CUBAÇÃO - ESCAVAÇÃO CUT-OFF				
Estaca	Est. Acum.	Área	Vol. Parcial (m³)	Vol. Acum.(m³)	
0+0,00	0,00	0,000	0,000	0,000	
1+0,00	20,00	0,000	0,000	0,000	
2+0,00	40,00	0,000	0,000	0,000	
3+0,00	60,00	78,310	783,100	783,100	
4+0,00	80,00	77,701	1560,110	2343,210	
5+0,00	100,00	17,867	955,680	3298,890	
6+0,00	120,00	16,134	340,010	3638,900	
7+0,00	140,00	15,351	314,850	3953,750	
8+0,00	160,00	27,916	432,670	4386,420	
9+0,00	180,00	69,426	973,420	5359,840	
10+0,00	200,00	60,820	1302,460	6662,300	
11+0,00	220,00	52,689	1135,090	7797,390	
12+0,00	240,00	53,031	1057,200	8854,590	
13+0,00	260,00	44,445	974,760	9829,350	
14+0,00	280,00	42,541	869,860	10699,210	
15+0,00	300,00	19,116	616,570	11315,780	
16+0,00	320,00	44,846	639,620	11955,400	
17+0,00	340,00	109,608	1544,540	13499,940	
18+0,00	360,00	114,086	2236,940	15736,880	
19+0,00	380,00	69,485	1835,710	17572,590	
20+0,00	400,00	70,215	1397,000	18969,590	
21+0,00	420,00	69,552	1397,670	20367,260	
22+0,00	440,00	67,499	1370,510	21737,770	
23+0,00	460,00	67,543	1350,420	23088,190	
24+0,00	480,00	70,450	1379,930	24468,120	
25+0,00	500,00	86,121	1565,710	26033,830	
26+0,00	520,00	86,686	1728,070	27761,900	
27+0,00	540,00	62,696	1493,820	29255,720	
28+0,00	560,00	71,678	1343,740	30599,460	
29+0,00	580,00	176,721	2483,990	33083,450	
30+0,00	600,00	0,000	1767,210	34850,660	
31+0,00	620,00	0,000	0,000	34850,660	
32+0,00	640,00	0,000	0,000	34850,660	
	Total Volume (m³) 34850,660				

Q	QUADRO DE CUBAÇÃO - MATERIAL MONTANTE (PROVENIENTE DE JAZIDAS)				
Estaca	Est. Acum.	Área	Vol. Parcial (m³)	Vol. Acum.(m³)	
0+0,00	0,00	0,000	0,000	0,000	
1+0,00	20,00	0,000	0,000	0,000	
2+0,00	40,00	23,660	236,600	236,600	
3+0,00	60,00	186,730	2103,900	2340,500	
4+0,00	80,00	345,195	5319,250	7659,750	
5+0,00	100,00	552,417	8976,120	16635,870	
6+0,00	120,00	696,143	12485,600	29121,470	
7+0,00	140,00	842,234	15383,770	44505,240	
8+0,00	160,00	908,948	17511,820	62017,060	
9+0,00	180,00	944,089	18530,370	80547,430	
10+0,00	200,00	1063,403	20074,920	100622,350	
11+0,00	220,00	1101,131	21645,340	122267,690	
12+0,00	240,00	1102,423	22035,540	144303,230	
13+0,00	260,00	1046,166	21485,890	165789,120	
14+0,00	280,00	1062,519	21086,850	186875,970	
15+0,00	300,00	1057,788	21203,070	208079,040	
16+0,00	320,00	828,420	18862,080	226941,120	
17+0,00	340,00	774,426	16028,460	242969,580	
18+0,00	360,00	783,812	15582,380	258551,960	
19+0,00	380,00	848,774	16325,860	274877,820	
20+0,00	400,00	881,995	17307,690	292185,510	
21+0,00	420,00	880,115	17621,100	309806,610	
22+0,00	440,00	883,214	17633,290	327439,900	
23+0,00	460,00	881,828	17650,420	345090,320	
24+0,00	480,00	863,706	17455,340	362545,660	
25+0,00	500,00	816,422	16801,280	379346,940	
26+0,00	520,00	810,393	16268,150	395615,090	
27+0,00	540,00	837,701	16480,940	412096,030	
28+0,00	560,00	739,249	15769,500	427865,530	
29+0,00	580,00	482,398	12216,470	440082,000	
30+0,00	600,00	82,366	5647,640	445729,640	
31+0,00	620,00	0,000	823,660	446553,300	
32+0,00	640,00	0,000	0,000	446553,300	
	-		Total Volume (m³)	446553,300	

QUADRO D	E CUBAÇÃO - MATERIAI	L JUSANTE (PROVENIEN	TE DE ESCAVAÇÃO VER	RTEDOURO)
Estaca	Est. Acum.	Área	Vol. Parcial (m³)	Vol. Acum.(m³)
0+0,00	0,00	0,000	0,000	0,000
1+0,00	20,00	0,000	0,000	0,000
2+0,00	40,00	2,370	23,700	23,700
3+0,00	60,00	33,902	362,720	386,420
4+0,00	80,00	111,700	1456,020	1842,440
5+0,00	100,00	300,350	4120,500	5962,940
6+0,00	120,00	403,858	7042,080	13005,020
7+0,00	140,00	487,926	8917,840	21922,860
8+0,00	160,00	527,629	10155,550	32078,410
9+0,00	180,00	538,636	10662,650	42741,060
10+0,00	200,00	571,080	11097,160	53838,220
11+0,00	220,00	596,040	11671,200	65509,420
12+0,00	240,00	615,379	12114,190	77623,610
13+0,00	260,00	560,871	11762,500	89386,110
14+0,00	280,00	636,442	11973,130	101359,240
15+0,00	300,00	591,913	12283,550	113642,790
16+0,00	320,00	619,624	12115,370	125758,160
17+0,00	340,00	584,108	12037,320	137795,480
18+0,00	360,00	462,425	10465,330	148260,810
19+0,00	380,00	537,004	9994,290	158255,100
20+0,00	400,00	552,795	10897,990	169153,090
21+0,00	420,00	557,527	11103,220	180256,310
22+0,00	440,00	561,647	11191,740	191448,050
23+0,00	460,00	570,448	11320,950	202769,000
24+0,00	480,00	605,501	11759,490	214528,490
25+0,00	500,00	548,327	11538,280	226066,770
26+0,00	520,00	550,864	10991,910	237058,680
27+0,00	540,00	551,202	11020,660	248079,340
28+0,00	560,00	491,525	10427,270	258506,610
29+0,00	580,00	277,136	7686,610	266193,220
30+0,00	600,00	86,164	3633,000	269826,220
31+0,00	620,00	0,000	861,640	270687,860
32+0,00	640,00	0,000	0,000	270687,860
			Total Volume (m³)	270687,860

	QUADRO DE CUBAÇÃO - FILTRO HORIZONTAL (AREIA)				
Estaca	Est. Acum.	Área	Vol. Parcial (m³)	Vol. Acum.(m³)	
0+0,00	0,00	0,000	0,000	0,000	
1+0,00	20,00	0,000	0,000	0,000	
2+0,00	40,00	5,395	53,950	53,950	
3+0,00	60,00	17,808	232,030	285,980	
4+0,00	80,00	31,210	490,180	776,160	
5+0,00	100,00	50,877	820,870	1597,030	
6+0,00	120,00	62,757	1136,340	2733,370	
7+0,00	140,00	63,838	1265,950	3999,320	
8+0,00	160,00	64,155	1279,930	5279,250	
9+0,00	180,00	63,439	1275,940	6555,190	
10+0,00	200,00	62,253	1256,920	7812,110	
11+0,00	220,00	61,705	1239,580	9051,690	
12+0,00	240,00	61,369	1230,740	10282,430	
13+0,00	260,00	64,193	1255,620	11538,050	
14+0,00	280,00	61,802	1259,950	12798,000	
15+0,00	300,00	63,353	1251,550	14049,550	
16+0,00	320,00	65,239	1285,920	15335,470	
17+0,00	340,00	60,997	1262,360	16597,830	
18+0,00	360,00	64,343	1253,400	17851,230	
19+0,00	380,00	63,722	1280,650	19131,880	
20+0,00	400,00	63,529	1272,510	20404,390	
21+0,00	420,00	63,284	1268,130	21672,520	
22+0,00	440,00	63,554	1268,380	22940,900	
23+0,00	460,00	62,468	1260,220	24201,120	
24+0,00	480,00	62,360	1248,280	25449,400	
25+0,00	500,00	64,051	1264,110	26713,510	
26+0,00	520,00	63,577	1276,280	27989,790	
27+0,00	540,00	62,538	1261,150	29250,940	
28+0,00	560,00	61,671	1242,090	30493,030	
29+0,00	580,00	53,895	1155,660	31648,690	
30+0,00	600,00	30,957	848,520	32497,210	
31+0,00	620,00	0,000	309,570	32806,780	
32+0,00	640,00	0,000	0,000	32806,780	
			Total Volume (m³)	32806,780	

	QUADRO DE CUBAÇÃO	- RIP-RAP PROTEÇÃO D	E MONTANTE (PEDRAS)	
Estaca	Est. Acum.	Área	Vol. Parcial (m³)	Vol. Acum.(m³)
0+0,00	0,00	0,000	0,000	0,000
1+0,00	20,00	0,000	0,000	0,000
2+0,00	40,00	6,528	65,280	65,280
3+0,00	60,00	15,611	221,390	286,670
4+0,00	80,00	26,348	419,590	706,260
5+0,00	100,00	37,350	636,980	1343,240
6+0,00	120,00	42,691	800,410	2143,650
7+0,00	140,00	47,208	898,990	3042,640
8+0,00	160,00	55,342	1025,500	4068,140
9+0,00	180,00	51,733	1070,750	5138,890
10+0,00	200,00	51,783	1035,160	6174,050
11+0,00	220,00	53,674	1054,570	7228,620
12+0,00	240,00	54,195	1078,690	8307,310
13+0,00	260,00	51,907	1061,020	9368,330
14+0,00	280,00	51,619	1035,260	10403,590
15+0,00	300,00	47,643	992,620	11396,210
16+0,00	320,00	41,098	887,410	12283,620
17+0,00	340,00	39,044	801,420	13085,040
18+0,00	360,00	39,839	788,830	13873,870
19+0,00	380,00	42,302	821,410	14695,280
20+0,00	400,00	42,862	851,640	15546,920
21+0,00	420,00	43,819	866,810	16413,730
22+0,00	440,00	43,910	877,290	17291,020
23+0,00	460,00	43,936	878,460	18169,480
24+0,00	480,00	43,596	875,320	19044,800
25+0,00	500,00	41,599	851,950	19896,750
26+0,00	520,00	42,851	844,500	20741,250
27+0,00	540,00	43,223	860,740	21601,990
28+0,00	560,00	40,308	835,310	22437,300
29+0,00	580,00	24,590	648,980	23086,280
30+0,00	600,00	9,179	337,690	23423,970
31+0,00	620,00	0,000	91,790	23515,760
32+0,00	640,00	0,000	0,000	23515,760
			Total Volume (m³)	23515,760

	QUADRO DE CUBAÇÃO - RIP-RAP PROTEÇÃO DE MONTANTE (BRITA)					
Estaca	Est. Acum.	Área	Vol. Parcial (m³)	Vol. Acum.(m³)		
0+0,00	0,00	0,000	0,000	0,000		
1+0,00	20,00	0,000	0,000	0,000		
2+0,00	40,00	2,745	27,450	27,450		
3+0,00	60,00	6,656	94,010	121,460		
4+0,00	80,00	11,259	179,150	300,610		
5+0,00	100,00	16,003	272,620	573,230		
6+0,00	120,00	18,316	343,190	916,420		
7+0,00	140,00	20,290	386,060	1302,480		
8+0,00	160,00	23,467	437,570	1740,050		
9+0,00	180,00	22,237	457,040	2197,090		
10+0,00	200,00	22,288	445,250	2642,340		
11+0,00	220,00	23,066	453,540	3095,880		
12+0,00	240,00	23,307	463,730	3559,610		
13+0,00	260,00	22,320	456,270	4015,880		
14+0,00	280,00	22,299	446,190	4462,070		
15+0,00	300,00	20,551	428,500	4890,570		
16+0,00	320,00	17,751	383,020	5273,590		
17+0,00	340,00	16,752	345,030	5618,620		
18+0,00	360,00	17,099	338,510	5957,130		
19+0,00	380,00	18,146	352,450	6309,580		
20+0,00	400,00	18,396	365,420	6675,000		
21+0,00	420,00	18,821	372,170	7047,170		
22+0,00	440,00	18,867	376,880	7424,050		
23+0,00	460,00	18,857	377,240	7801,290		
24+0,00	480,00	18,719	375,760	8177,050		
25+0,00	500,00	17,844	365,630	8542,680		
26+0,00	520,00	18,351	361,950	8904,630		
27+0,00	540,00	18,632	369,830	9274,460		
28+0,00	560,00	17,300	359,320	9633,780		
29+0,00	580,00	10,596	278,960	9912,740		
30+0,00	600,00	4,103	146,990	10059,730		
31+0,00	620,00	0,000	41,030	10100,760		
32+0,00	640,00	0,000	0,000	10100,760		
	Total Volume (m³) 10100,760					

Q	QUADRO DE CUBAÇÃO - PROTEÇÃO TALUDE DE JUSANTE (BRITA CORRIDA)				
Estaca	Est. Acum.	Área	Vol. Parcial (m³)	Vol. Acum.(m³)	
0+0,00	0,00	0,000	0,000	0,000	
1+0,00	20,00	0,000	0,000	0,000	
2+0,00	40,00	1,569	15,690	15,690	
3+0,00	60,00	2,751	43,200	58,890	
4+0,00	80,00	5,442	81,930	140,820	
5+0,00	100,00	8,700	141,420	282,240	
6+0,00	120,00	13,521	222,210	504,450	
7+0,00	140,00	14,601	281,220	785,670	
8+0,00	160,00	14,601	292,020	1077,690	
9+0,00	180,00	14,601	292,020	1369,710	
10+0,00	200,00	14,601	292,020	1661,730	
11+0,00	220,00	14,601	292,020	1953,750	
12+0,00	240,00	14,601	292,020	2245,770	
13+0,00	260,00	14,601	292,020	2537,790	
14+0,00	280,00	14,601	292,020	2829,810	
15+0,00	300,00	14,601	292,020	3121,830	
16+0,00	320,00	14,601	292,020	3413,850	
17+0,00	340,00	14,601	292,020	3705,870	
18+0,00	360,00	14,601	292,020	3997,890	
19+0,00	380,00	14,601	292,020	4289,910	
20+0,00	400,00	14,601	292,020	4581,930	
21+0,00	420,00	14,601	292,020	4873,950	
22+0,00	440,00	14,601	292,020	5165,970	
23+0,00	460,00	14,601	292,020	5457,990	
24+0,00	480,00	14,601	292,020	5750,010	
25+0,00	500,00	14,601	292,020	6042,030	
26+0,00	520,00	14,601	292,020	6334,050	
27+0,00	540,00	14,601	292,020	6626,070	
28+0,00	560,00	14,601	292,020	6918,090	
29+0,00	580,00	12,432	270,330	7188,420	
30+0,00	600,00	7,413	198,450	7386,870	
31+0,00	620,00	0,000	74,130	7461,000	
32+0,00	640,00	0,000	0,000	7461,000	
	Total Volume (m³) 7461,000				

	QUADRO DE CUBAÇÃO - ROCK-FILL PROTEÇÃO DE JUSANTE (PEDRA)				
Estaca	Est. Acum.	Área	Vol. Parcial (m³)	Vol. Acum.(m³)	
0+0,00	0,00	0,000	0,000	0,000	
1+0,00	20,00	0,000	0,000	0,000	
2+0,00	40,00	0,000	0,000	0,000	
3+0,00	60,00	3,700	37,000	37,000	
4+0,00	80,00	3,752	74,520	111,520	
5+0,00	100,00	6,274	100,260	211,780	
6+0,00	120,00	3,600	98,740	310,520	
7+0,00	140,00	12,218	158,180	468,700	
8+0,00	160,00	16,889	291,070	759,770	
9+0,00	180,00	20,891	377,800	1137,570	
10+0,00	200,00	33,056	539,470	1677,040	
11+0,00	220,00	43,439	764,950	2441,990	
12+0,00	240,00	52,876	963,150	3405,140	
13+0,00	260,00	26,182	790,580	4195,720	
14+0,00	280,00	55,291	814,730	5010,450	
15+0,00	300,00	44,464	997,550	6008,000	
16+0,00	320,00	29,029	734,930	6742,930	
17+0,00	340,00	53,940	829,690	7572,620	
18+0,00	360,00	19,261	732,010	8304,630	
19+0,00	380,00	21,477	407,380	8712,010	
20+0,00	400,00	23,478	449,550	9161,560	
21+0,00	420,00	26,364	498,420	9659,980	
22+0,00	440,00	23,728	500,920	10160,900	
23+0,00	460,00	30,786	545,140	10706,040	
24+0,00	480,00	34,888	656,740	11362,780	
25+0,00	500,00	21,626	565,140	11927,920	
26+0,00	520,00	22,865	444,910	12372,830	
27+0,00	540,00	26,218	490,830	12863,660	
28+0,00	560,00	19,403	456,210	13319,870	
29+0,00	580,00	3,487	228,900	13548,770	
30+0,00	600,00	0,000	34,870	13583,640	
31+0,00	620,00	0,000	0,000	13583,640	
32+0,00	640,00	0,000	0,000	13583,640	
	Total Volume (m³) 13583,640				

	QUADRO DE CUBAÇÃO - ROCK-FILL PROTEÇÃO DE JUSANTE (BRITA)					
Estaca	Est. Acum.	Área	Vol. Parcial (m³)	Vol. Acum.(m³)		
0+0,00	0,00	0,000	0,000	0,000		
1+0,00	20,00	0,000	0,000	0,000		
2+0,00	40,00	0,000	0,000	0,000		
3+0,00	60,00	2,105	21,050	21,050		
4+0,00	80,00	2,165	42,700	63,750		
5+0,00	100,00	3,387	55,520	119,270		
6+0,00	120,00	1,980	53,670	172,940		
7+0,00	140,00	4,168	61,480	234,420		
8+0,00	160,00	4,854	90,220	324,640		
9+0,00	180,00	5,435	102,890	427,530		
10+0,00	200,00	6,788	122,230	549,760		
11+0,00	220,00	7,767	145,550	695,310		
12+0,00	240,00	8,546	163,130	858,440		
13+0,00	260,00	6,040	145,860	1004,300		
14+0,00	280,00	8,808	148,480	1152,780		
15+0,00	300,00	7,707	165,150	1317,930		
16+0,00	320,00	6,469	141,760	1459,690		
17+0,00	340,00	8,457	149,260	1608,950		
18+0,00	360,00	4,977	134,340	1743,290		
19+0,00	380,00	5,642	106,190	1849,480		
20+0,00	400,00	5,754	113,960	1963,440		
21+0,00	420,00	6,233	119,870	2083,310		
22+0,00	440,00	5,822	120,550	2203,860		
23+0,00	460,00	6,692	125,140	2329,000		
24+0,00	480,00	7,149	138,410	2467,410		
25+0,00	500,00	5,682	128,310	2595,720		
26+0,00	520,00	5,650	113,320	2709,040		
27+0,00	540,00	6,023	116,730	2825,770		
28+0,00	560,00	5,340	113,630	2939,400		
29+0,00	580,00	0,000	53,400	2992,800		
30+0,00	600,00	0,000	0,000	2992,800		
31+0,00	620,00	0,000	0,000	2992,800		
32+0,00	640,00	0,000	0,000	2992,800		
	Total Volume (m³) 2992,800					

	QUADRO DE CUBAÇÃO - ROCK-FILL PROTEÇÃO DE JUSANTE (AREIA)				
Estaca	Est. Acum.	Área	Vol. Parcial (m³)	Vol. Acum.(m³)	
0+0,00	0,00	0,000	0,000	0,000	
1+0,00	20,00	0,000	0,000	0,000	
2+0,00	40,00	0,000	0,000	0,000	
3+0,00	60,00	1,712	17,120	17,120	
4+0,00	80,00	1,792	35,040	52,160	
5+0,00	100,00	2,967	47,590	99,750	
6+0,00	120,00	1,541	45,080	144,830	
7+0,00	140,00	4,182	57,230	202,060	
8+0,00	160,00	4,872	90,540	292,600	
9+0,00	180,00	5,458	103,300	395,900	
10+0,00	200,00	6,813	122,710	518,610	
11+0,00	220,00	7,792	146,050	664,660	
12+0,00	240,00	8,570	163,620	828,280	
13+0,00	260,00	6,063	146,330	974,610	
14+0,00	280,00	8,840	149,030	1123,640	
15+0,00	300,00	7,731	165,710	1289,350	
16+0,00	320,00	6,504	142,350	1431,700	
17+0,00	340,00	8,496	150,000	1581,700	
18+0,00	360,00	4,969	134,650	1716,350	
19+0,00	380,00	5,338	103,070	1819,420	
20+0,00	400,00	5,779	111,170	1930,590	
21+0,00	420,00	5,929	117,080	2047,670	
22+0,00	440,00	5,847	117,760	2165,430	
23+0,00	460,00	6,727	125,740	2291,170	
24+0,00	480,00	7,184	139,110	2430,280	
25+0,00	500,00	5,379	125,630	2555,910	
26+0,00	520,00	5,669	110,480	2666,390	
27+0,00	540,00	6,030	116,990	2783,380	
28+0,00	560,00	5,017	110,470	2893,850	
29+0,00	580,00	1,384	64,010	2957,860	
30+0,00	600,00	1,316	27,000	2984,860	
31+0,00	620,00	0,000	13,160	2998,020	
32+0,00	640,00	0,000	0,000	2998,020	
		<u> </u>	Total Volume (m³)	2998,020	

	QUADRO DE CUBAÇÃO - COROAMENTO							
Estaca	Est. Acum.	Área	Vol. Parcial (m³)	Vol. Acum.(m³)				
0+0,00	0,00	0,000	0,000	0,000				
1+0,00	20,00	0,000	0,000	0,000				
2+0,00	40,00	2,113	21,130	21,130				
3+0,00	60,00	2,113	42,260	63,390				
4+0,00	80,00	2,113	42,260	105,650				
5+0,00	100,00	2,113	42,260	147,910				
6+0,00	120,00	2,113	42,260	190,170				
7+0,00	140,00	2,113	42,260	232,430				
8+0,00	160,00	2,113	42,260	274,690				
9+0,00	180,00	2,113	42,260	316,950				
10+0,00	200,00	2,113	42,260	359,210				
11+0,00	220,00	2,113	42,260	401,470				
12+0,00	240,00	2,113	42,260	443,730				
13+0,00	260,00	2,113	42,260	485,990				
14+0,00	280,00	2,113	42,260	528,250				
15+0,00	300,00	2,113	42,260	570,510				
16+0,00	320,00	2,113	42,260	612,770				
17+0,00	340,00	2,113	42,260	655,030				
18+0,00	360,00	2,113	42,260	697,290				
19+0,00	380,00	2,113	42,260	739,550				
20+0,00	400,00	2,113	42,260	781,810				
21+0,00	420,00	2,113	42,260	824,070				
22+0,00	440,00	2,113	42,260	866,330				
23+0,00	460,00	2,113	42,260	908,590				
24+0,00	480,00	2,113	42,260	950,850				
25+0,00	500,00	2,113	42,260	993,110				
26+0,00	520,00	2,113	42,260	1035,370				
27+0,00	540,00	2,113	42,260	1077,630				
28+0,00	560,00	2,113	42,260	1119,890				
29+0,00	580,00	2,113	42,260	1162,150				
30+0,00	600,00	2,113	42,260	1204,410				
31+0,00	620,00	0,000	21,130	1225,540				
32+0,00	640,00	0,000	0,000	1225,540				
			Total Volume (m³)	1225,540				

Projeto: VERTEDOURO FRECHEIRINHA (ALTERNATIVA 02)

QUADRO DE CUBAÇÃO (ESCAVAÇÃO) - VERTEDOURO						
Estaca	Est. Acum.	Área	Vol. Parcial (m³)	Vol. Acum.(m³)		
0+0,00	0,00	119,715	0,000	0,000		
1+0,00	20,00	200,677	3203,920	3203,920		
2+0,00	40,00	181,169	3818,460	7022,380		
3+0,00	60,00	260,053	4412,220	11434,600		
4+0,00	80,00	558,437	8184,900	19619,500		
5+0,00	100,00	939,328	14977,650	34597,150		
6+0,00	120,00	1333,523	22728,510	57325,660		
7+0,00	140,00	1641,761	29752,840	87078,500		
8+0,00	160,00	1715,288	33570,490	120648,990		
9+0,00	180,00	1716,890	34321,780	154970,770		
10+0,00	200,00	1479,595	31964,850	186935,620		
11+0,00	220,00	1232,931	27125,260	214060,880		
12+0,00	240,00	1117,328	23502,590	237563,470		
13+0,00	260,00	1330,547	24478,750	262042,220		
14+0,00	280,00	1103,491	24340,380	286382,600		
15+0,00	300,00	832,834	19363,250	305745,850		
16+0,00	320,00	585,042	14178,760	319924,610		
17+0,00	340,00	410,014	9950,560	329875,170		
18+0,00	360,00	452,477	8624,910	338500,080		
19+0,00	380,00	483,823	9363,000	347863,080		
20+0,00	400,00	453,147	9369,700	357232,780		
21+0,00	420,00	412,952	8660,990	365893,770		
22+0,00	440,00	402,383	8153,350	374047,120		
23+0,00	460,00	353,276	7556,590	381603,710		
24+0,00	480,00	237,894	5911,700	387515,410		
25+0,00	500,00	0,000	2378,940	389894,350		
25+9,49	509,49	0,000	0,000	389894,350		
			Total Volume (m³)	389894,350		

Projeto: VERTEDOURO FRECHEIRINHA (ALTERNATIVA 02)

	QUADRO DE CUBAÇÃO 1ª CATEGORIA - TOMADA D'ÁGUA							
Estaca	Est. Acum.	Área	Vol. Parcial (m³)	Vol. Acum.(m³)				
0+0,00	0,00	0,000	0,000	0,000				
1+0,00	20,00	0,000	0,000	0,000				
1+11,82	31,82	0,678	4,007	4,007				
2+0,00	40,00	34,210	142,692	146,699				
3+0,00	60,00	66,047	1.002,570	1.149,269				
4+0,00	80,00	91,293	1.573,400	2.722,669				
5+0,00	100,00	77,149	1.684,420	4.407,089				
6+0,00	120,00	69,665	1.468,140	5.875,229				
7+0,00	140,00	54,236	1.239,010	7.114,239				
8+0,00	160,00	60,556	1.147,920	8.262,159				
9+0,00	180,00	43,958	1.045,140	9.307,299				
10+0,00	200,00	23,035	669,930	9.977,229				
11+0,00	220,00	16,607	396,420	10.373,649				
12+0,00	240,00	0,000	166,070	10.539,719				
	-	-	Total Volume (m³)	10.539,719				

Projeto: VERTEDOURO FRECHEIRINHA (ALTERNATIVA 02)

	QUADRO DE CUBAÇÃO 3ª CATEGORIA - TOMADA D'ÁGUA							
Estaca	Est. Acum.	Área	Vol. Parcial (m³)	Vol. Acum.(m³)				
0+0,00	0,00	0,000	0,000	0,000				
1+0,00	20,00	0,000	0,000	0,000				
1+11,82	31,82	0,000	0,000	0,000				
2+0,00	40,00	0,000	0,000	0,000				
3+0,00	60,00	85,696	856,960	856,960				
4+0,00	80,00	120,237	2.059,330	2.916,290				
5+0,00	100,00	82,374	2.026,110	4.942,400				
6+0,00	120,00	49,429	1.318,030	6.260,430				
7+0,00	140,00	27,407	768,360	7.028,790				
8+0,00	160,00	18,943	463,500	7.492,290				
9+0,00	180,00	4,702	236,450	7.728,740				
10+0,00	200,00	0,000	47,020	7.775,760				
11+0,00	220,00	0,000	0,000	7.775,760				
12+0,00	240,00	0,000	0,000	7.775,760				
			Total Volume (m³)	7.775,760				

ANEXO 1: CURVA-CHAVE RIO CAIÇARA

ANEXO:

ESTUDOS HIDRÁULICOS REFERENTE À ELABORAÇÃO DA CURVA-CHAVE DO RIO CAIÇARA A JUSANTE DA BARRAGEM FRECHEIRINHA

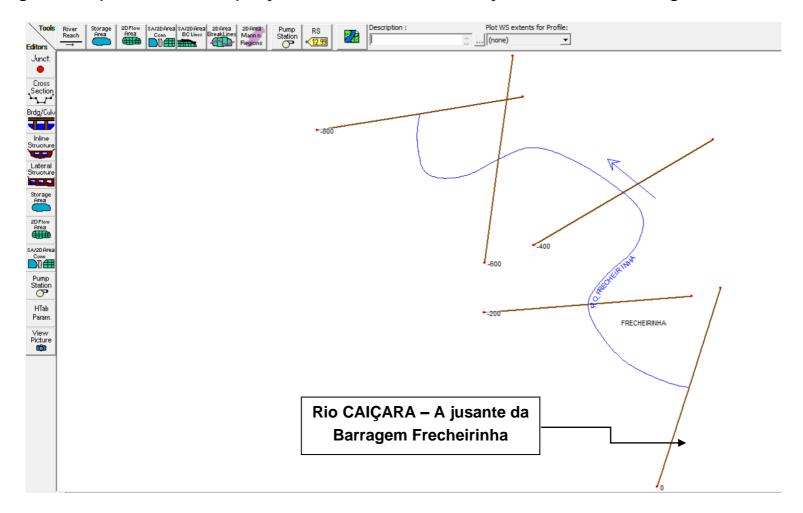
1 – ELABORAÇÃO DA CURVA-CHAVE DO RIO CAIÇARA A JUSANTE DA BARRAGEM FRECHEIRINHA

O objetivo da determinação de curvas-chave do trecho do riacho a jusante da barragem e do canal de restituição do sangradouro é avaliar o tail water que pode vir a interferir nas estruturas hidráulicas dimensionadas.

As seções apresentadas no presente estudo para determinação das curvaschave foram escolhidas de acordo com as condições topográficas do Rio Caiçara definidas a partir do levantamento topográfico convencional realizado ao longo da calha no trecho em estudo.

1.1 – DEFINIÇÃO DAS SEÇÕES TRANSVERSAIS PARA COMPOSIÇÃO DA CURVA CHAVE

Para que se possa investigar as condições fluviais, níveis d'água no rio, é imprescindível que as seções transversais sejam definidas dentro dos seguintes critérios:


- a) Seções transversais ao riacho com o espaçamento médio entre elas condicionado ao propósito do estudo, ou seja, o menor possível para evitar perda de informação topográfica relevante entre as seções e permitir uma convergência apropriada no modelo numérico de simulação (HEC-RAS);
- b) Representação de todos os locais onde ocorrem mudanças significativas: seção crítica, vazão, declividade ou rugosidade;
- c) Sejam suficientemente extensas para revelar canais afluentes à zona de convergência do vertimento possibilitando identificar a divisão de fluxo em calhas diferentes daquela da calha natural principal;
- d) A primeira seção na calha natural do rio esteja a uma distância suficiente para representar nas seções de jusante as condições hidráulicas naturais do rio;
- e) A última seção deve estar suficientemente longe da barragem de nível (local de derivação) do Rio Caiçara para que o fluxo modelado na mesma não sofra qualquer tipo de influência da obra implantada a montante, permitindo assim descrever uma linha de remanso compatível com o regime natural fluvial anterior à execução da obra.

Com base nestes critérios foram estabelecidas 5 seções transversais na calha do Rio Caiçara, conforme se apresenta na **Figura 1.1**.

tpfe.com.br - 1 -

Figura 1.1 – (Tela do HEC-RAS) Seções Transversais do Rio Caiçara a Jusante da Barragem Frecheirinha

tpfe.com.br

2

1.2 – MODELO COMPUTACIONAL EMPREGADO PARA CÁLCULO DA CURVA CHAVE

No presente trabalho, a modelagem matemática da curva chave do Riacho a Jusante da Barragem Frecheirinha foi feita a partir do emprego do software HEC-RAS (Hydrologic Engineering Center – River Analysis System), versão 5.0.3 de Setembro de 2016, do U.S. Army Corps of Engineers – USACE, que é um programa utilizado para a propagação do escoamento em canais ou condutos fechados considerando todos os efeitos dinâmicos e de pressão.

O modelo HEC-RAS foi concebido para ambiente windows. Tal qual o HEC-HMS (Hydrologic Engineering Center – Hydrologic Modeling System), faz parte da família de modelos hidrológicos e hidráulicos do U.S. ARMY CORPS OF ENGENIERING, cujo uso é bastante difundido entre os profissionais da área de recursos hídricos e que produz resultados consistentes e satisfatórios.

A metodologia incorporada no modelo HEC-RAS baseia-se em algumas hipóteses simplificadoras quais sejam:

- Escoamento gradualmente variado, exceto nas estruturas hidráulicas (pontes, bueiros, comportas e vertedouros) onde o escoamento é rapidamente variado e utiliza-se a equação do momento, ou outras equações empíricas.
- Escoamento unidimensional com correção para distribuição horizontal da velocidade
- Canais com pequena declividade (menores que 1:10 ou 10%)

1.3 – CONDIÇÕES DE CONTORNO DA MODELAGEM COM O HEC-RAS

Foram definidas as envoltórias do escoamento fluvial a jusante do sangradouro da barragem Frecheirinha para as vazões de pico dos respectivos hidrogramas de cheia vertentes laminadas no reservatório, as quais foram admitidas em regime permanente, suposição esta que é bem plausível, uma vez que o pico das vazões efluentes para cada período de retorno deverá permanecer por pelo menos algumas horas tal como mostram os hidrogramas dos Estudos Hidrológicos do anteprojeto desta barragem.

tpfe.com.br

3

1.3.1 - Vazões da Curva Chave

As vazões de referência definidas naqueles estudos hidrológicos foram somente para a cheia efluente milenar ($Q_{eflu} = 111,96 \text{ m}^3/\text{s}$) e cheia efluente decamilenar ($Q_{eflu} = 147,42 \text{ m}^3/\text{s}$).

Na prática bastariam estas duas vazões para se avaliar o *tail water* a jusante do sangradouro, porém foram empregadas também vazões de baixa recorrência para se ter uma definição mais precisa da curva-chave. O **Quadro 1.1** apresenta as vazões simuladas no HEC-RAS.

Quadro 1.1 – Vazões Simuladas

RECORRÊNCIA	VAZÕES EFLUENTES (m³/s) Considerando amortecimento na Barragem Frecheirinha
	15,00
	40,00
	70,00
Tr=1000anos	111,96
Tr=10000anos	147,42
	175,00

1.3.2 - Coeficiente de Manning

Foram adotados no estudo os coeficientes de rugosidade de Manning iguais a 0,025 para a calha do riacho (leito normal) e 0,030 para as margens inundáveis, de acordo com o **Quadro 1.2** (CHOW, 1959).

Quadro 1.2 – Valores (*n*) das fórmulas de Manning de acordo com Chow (1959)

N°	Natureza das paredes	n
1	Canais de chapas com rebites embutidos, juntas perfeitas e águas limpas. Tubos de cimento e de fundição m perfeitas condições	0,011
2	Canais de cimento muito liso de dimensões limitadas, de madeira aplainada e lixada, em ambos os casos; trechos retilíneos compridos e curvas de grande raio e água limpa. Tubos de fundição usados	0,012
3	Canais com reboco de cimento liso, porém com curvas de raio limitado e águas não completamente limpas; construídos com madeira lisa, mas com curvas de raio moderado	0,013
4	Canais com reboco de cimento não completamente liso; de madeira como no nº 2, porém com traçado tortuoso e curvas de pequeno raio	0,014

tpfe.com.br

N°	Natureza das paredes	n
	e juntas imperfeitas	
5	Canais com paredes de cimento não completamente lisas, com curvas estreitas e águas com detritos; construídos de madeira não-aplainada de chapas rebitadas	0,015
6	Canais com reboco de cimento não muito alisado e pequenos depósitos no fundo; revestidos por madeira não-aplainada; de alvenaria construída com esmero; de terra, sem vegetação	0,016
7	Canais com reboco de cimento incompletos, juntas irregulares, andamento tortuoso e depósitos no fundo; de alvenaria revestindo taludes não bem perfilados	0,017
8	Canais com reboco de cimento rugoso, depósito no fundo, musgo nas paredes e traçado tortuoso	0,018
9	Canais de alvenaria em más condições de manutenção e fundo com barro, ou de alvenaria de pedregulhos; de terra, bem construídos, sem vegetação e com curva de grande raio	0,02
10	Canais de chapas rebitadas e juntas irregulares; de terra, bem construídos com pequenos depósitos no fundo e vegetação rasteira nos taludes	0,022
11	Canais de terra, com vegetação rasteira no fundo e nos taludes	0,025
12	Canais de terra, com vegetação normal, fundo com cascalhos ou irregular por causa de erosões; revestidos com pedregulhos e vegetação	0,030
13	Álveos naturais, cobertos de cascalhos e vegetação	0,035
14	Álveos naturais, andamento tortuoso	0,040

1.3.3 – Declividade do Trecho a Simular e Condições de Contorno

No modelo computacional HEC-RAS, algumas condições de contorno são necessárias para que sejam estabelecidos os níveis da água a partir das extremidades do rio/riacho (montante e jusante): (I) Regime de escoamento subcrítico, as condições de contorno são necessárias apenas nas extremidades do sistema a jusante do rio. (II) No caso do regime supercrítico, as condições de contorno são necessárias apenas nas extremidades a montante do sistema fluvial. (III) Se o regime é misto, então as condições de contorno devem ser indicadas a todas as seções do sistema fluvial em estudo.

Como está sendo desejado encontrar a **curva chave do Rio Caiçara** resultante do escoamento da calha fluvial do Riacho a jusante da bacia de dissipação do sangradouro, seria inadequada estabelecer qualquer outra condição de contorno que não fosse a da profundidade normal do regime permanente.

tpfe.com.br

Rua Irene Ramos de Matos,176 51011-530 - Recife Fone: +55 81 3316-0700 CNPJ 12285.441/0001-66

Por não se conhecer a priori o regime de escoamento por ocasião das cheias críticas de rara frequência, simulou-se como regime misto (supercrítico, crítico e subcrítico) a partir da definição das declividades de montante e jusante.

A declividade média adotada para esse trabalho com base em informação de levantamentos topográficos recentes do leito do Rio Caiçara no trecho em estudo é apresentada a seguir:

 $S_0 = 0.0005 \text{ m/m} (0.50 \text{ m;km} - \text{valor relativo baixo})$

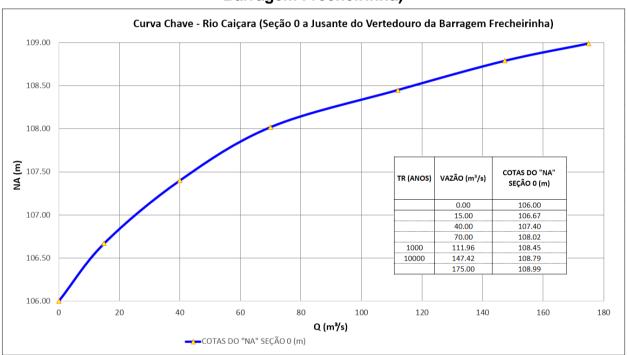
1.4 - RESULTADOS DA MODELAGEM NO HEC-RAS

Na **Figura 1.2** é mostrada a seção 0 imediatamente a jusante do vertedouro da Barragem Frecheirinha com as linhas d'água de cada vazão simulada para o Rio Caiçara.

Figura 1.2 – Seção 0 do Rio Caiçara a Jusante da Barragem Frecheirinha

O **Quadro 1.3** apresenta o sumário dos resultados computados pelo HEC-RAS para a seção imediatamente a jusante do vertedouro da Barragem Frecheirinha.

tpfe.com.br


6

Quadro 1.3 - Resultados Numéricos (Seção 0)

Recorrência	Q Total	Min Ch El Cota do Fundo	W.S. Elev	Crit W.S.	E.G. Elev Energia	E.G. Slope Declividade	Vel Flow Chnl Area		Top Width	Froude #
	(m3/s)	(m)	(m)	(m)	(m)	(m/m)	(m/s)	(m2)	(m)	
	15.0	105.88	106.67	106.29	106.71	0.000732	0.81	18.61	28.81	0.32
	40.0	105.88	107.4	106.6	107.44	0.00046	0.96	41.77	35.11	0.28
	70.0	105.88	108.02	106.88	108.08	0.000403	1.07	65.51	42.28	0.27
Tr=1000anos	112.0	105.88	108.45	107.19	108.54	0.000584	1.29	86.95	56.11	0.33
Tr=10000anos	147.4	105.88	108.79	107.42	108.88	0.000866	1.34	110.04	89.93	0.39
	175.0	105.88	108.99	107.59	109.08	0.000945	1.34	130.5	113.66	0.40

A Figura 1.3 - Curva-Chave para a Seção 0 do Caiçara (a jusante do vertedouro da Barragem Frecheirinha)

1.5 - CONCLUSÕES

Este estudo foi desenvolvido com base nas informações do anteprojeto da Barragem Frecheirinha e das curvas topográficas da restituição disponível.

Pode-se concluir a partir dos resultados das simulações que:

- ✓ O nível d'água para o Rio Caiçara na seção 0 imediatamente a jusante do vertedouro ocorre para a cheia milenar na cota 108,45m e para a cheia decamilenar na cota 108,79m, que são estabelecidos a partir das condições naturais da calha do Rio, como pode ser visto na Figuras 1.3.
- ✓ A cota da bacia de dissipação foi fixada em 108,06m e, de acordo com a verificação do ressalto hidráulica, o nível da altura conjugada Y2 calculada atinge os 1,96m, o que resulta no NA (nível d'água) de saída da bacia de dissipação na cota 110,02m (108,06 + 1,96 = 110,02) para a cheia decamilenar.
- ✓ Como o NA de 110,02m na saída da bacia de dissipação supera o NA de 108,79m da curva chave da seção 0 do Rio Caiçara, logo pode-se assegurar que ocorrerá a restituição para a calha do rio sem a possibilidade de remanso e consequente comprometimento das condições das estruturas hidráulicas projetadas.

ANEXO 2: NOTAS DE SERVIÇOS (BARRAGEM, VERTEDOURO E TOMADA D'ÁGUA

NOTA DE SERVIÇO TERRAPLENAGEM - LIMPEZA

ão: 00 Data: 20/12/2019

	ESTACA 1+10.00								
	COORD	ENADAS		COTAS					
DISTÂNCIA	х	٧	TERRENO	TERRENO	COTA				
	^	Ĭ	NATURAL	LIMPEZA	VERMELHA				
10,30	301831,830	9581984,587	134,842	134,842	0,000				
9,34	301832,463	9581983,867	134,799	133,883	-0,916				
4,34	301835,760	9581980,108	134,556	133,648	-0,908				
0,00	301838,625	9581976,844	134,311	133,392	-0,918				
5,52	301842,265	9581972,695	134,029	133,122	-0,907				
9,18	301844,680	9581969,943	133,786	132,881	-0,905				
18,78	301851,008	9581962,731	133,300	132,402	-0,898				
20,27	301851,997	9581961,605	133,229	132,327	-0,902				
22,39	301853,395	9581960,012	133,227	132,318	-0,909				
23,78	301854,306	9581958,973	133,115	132,212	-0,903				
24,61	301854,858	9581958,345	133,047	133,047	0,000				

	ESTACA 2+0.00								
	COORD	ENADAS		COTAS					
DISTÂNCIA	х	v	TERRENO	TERRENO	СОТА				
	^	Ĭ	NATURAL	LIMPEZA	VERMELHA				
15,06	301836,211	9581994,756	133,413	133,413	0,000				
13,73	301837,084	9581993,762	133,036	131,820	-1,216				
8,73	301840,381	9581990,004	132,675	131,453	-1,222				
0,00	301846,142	9581983,439	132,184	130,939	-1,245				
13,06	301854,758	9581973,620	131,341	130,105	-1,237				
18,06	301858,057	9581969,861	131,049	129,808	-1,241				
19,19	301858,798	9581969,016	130,893	130,893	0,000				

ESTACA 3+0.00								
	COORD	ENADAS		COTAS				
DISTÂNCIA	х	γ	TERRENO	TERRENO	COTA			
	^	r	NATURAL	LIMPEZA	VERMELHA			
24,37	301845,100	9582014,949	129,979	129,979	0,000			
22,90	301846,070	9582013,844	129,794	128,509	-1,285			
17,90	301849,367	9582010,086	129,152	127,869	-1,283			
17,24	301849,804	9582009,589	129,083	127,449	-1,634			
16,74	301850,133	9582009,213	129,031	127,449	-1,582			
16,24	301850,460	9582008,841	128,979	127,698	-1,281			
0,00	301861,175	9581996,630	127,278	126,018	-1,260			
19,44	301873,995	9581982,020	126,347	125,554	-0,793			
30,07	301881,007	9581974,029	126,347	125,071	-1,276			
31,29	301881,813	9581973,110	126,293	126,293	-0,001			

ESTACA 4+0.00								
	COORD	ENADAS		COTAS				
DISTÂNCIA	х	γ	TERRENO	TERRENO	COTA			
	, A	•	NATURAL	LIMPEZA	VERMELHA			
33,48	301854,126	9582034,987	127,319	127,319	-0,001			
30,94	301855,802	9582033,076	126,837	124,777	-2,060			
25,94	301859,100	9582029,318	125,889	123,851	-2,038			
25,57	301859,343	9582029,041	125,819	123,279	-2,540			
25,07	301859,672	9582028,666	125,724	123,279	-2,445			
24,47	301860,068	9582028,215	125,610	123,579	-2,031			
19,24	301863,521	9582024,280	124,622	122,613	-2,009			
0,00	301876,208	9582009,822	123,109	121,089	-2,020			
19,39	301888,996	9581995,248	122,517	120,498	-2,019			
39,31	301902,134	9581980,275	121,704	119,606	-2,098			

NOTA DE SERVIÇO TERRAPLENAGEM - LIMPEZA

o: 00 Data: 20/12/2019

		505404	4.40.00	Revisau. 00	Dala. 20/12/20		
ESTACA 1+10.00							
_	COORD	ENADAS		COTAS			
DISTÂNCIA	x	Υ	TERRENO	TERRENO	COTA		
	^	•	NATURAL	LIMPEZA	VERMELHA		
10,30	301831,830	9581984,587	134,842	134,842	0,000		
9,34	301832,463	9581983,867	134,799	133,883	-0,916		
4,34	301835,760	9581980,108	134,556	133,648	-0,908		
0,00	301838,625	9581976,844	134,311	133,392	-0,918		
5,52	301842,265	9581972,695	134,029	133,122	-0,907		
9,18	301844,680	9581969,943	133,786	132,881	-0,905		
18,78	301851,008	9581962,731	133,300	132,402	-0,898		
20,27	301851,997	9581961,605	133,229	132,327	-0,902		
22,39	301853,395	9581960,012	133,227	132,318	-0,909		
23,78	301854,306	9581958,973	133,115	132,212	-0,903		
24,61	301854,858	9581958,345	133,047	133,047	0,000		
44,31	301905,432	9581976,517	121,627	119,526	-2,101		
46,39	301906,806	9581974,952	121,608	121,608	0,000		

	ESTACA 5+0.00							
	COORD	ENADAS		COTAS				
DISTÂNCIA	х	γ	TERRENO	TERRENO	COTA			
	^	ī	NATURAL LIMPE	LIMPEZA	VERMELHA			
49,80	301858,391	9582060,449	123,039	123,039	0,000			
44,47	301861,907	9582056,442	122,373	117,709	-4,664			
39,47	301865,205	9582052,684	121,747	117,083	-4,665			
38,89	301865,591	9582052,244	121,684	116,619	-5,065			
38,39	301865,921	9582051,868	121,638	116,619	-5,019			
37,79	301866,316	9582051,417	121,584	116,919	-4,665			
19,17	301878,600	9582037,419	119,897	115,234	-4,663			
10,88	301884,067	9582031,188	119,188	114,548	-4,640			
0,00	301891,241	9582023,013	119,524	114,865	-4,659			
4,15	301893,980	9582019,891	119,476	114,834	-4,642			
20,00	301904,430	9582007,982	119,308	114,760	-4,548			
37,55	301916,008	9581994,787	118,836	114,190	-4,646			
58,84	301930,049	9581978,785	118,320	113,676	-4,644			
63,34	301933,020	9581975,401	118,179	118,179	0,000			

	ESTACA 6+0.00						
	COORD	ENADAS	COTAS				
DISTÂNCIA	х	Υ	TERRENO NATURAL	TERRENO LIMPEZA	COTA VERMELHA		
59,92	301866,752	9582081,244	117,286	117,286	0,000		
55,22	301869,851	9582077,713	117,399	112,588	-4,811		
50,22	301873,149	9582073,954	117,519	112,709	-4,811		
49,71	301873,488	9582073,568	117,532	112,459	-5,073		
48,71	301874,147	9582072,816	117,556	112,459	-5,097		
48,11	301874,543	9582072,365	117,570	112,759	-4,811		
40,27	301879,711	9582066,475	117,759	112,948	-4,811		
20,02	301893,068	9582051,254	118,039	113,234	-4,805		
0,00	301906,274	9582036,204	117,624	112,816	-4,808		
4,17	301909,023	9582033,071	117,506	112,698	-4,808		
15,51	301916,503	9582024,546	117,183	112,375	-4,808		
40,05	301932,689	9582006,101	116,033	111,225	-4,808		
60,12	301945,924	9581991,018	115,738	110,968	-4,770		
60,84	301946,403	9581990,472	115,778	110,993	-4,785		
65,84	301949,701	9581986,714	115,444	110,661	-4,784		

0,000

113,985

NOTA DE SERVIÇO TERRAPLENAGEM - LIMPEZA

				Revisão: 00	Data: 20/12/2019
		ESTACA	1+10.00		
	COORD	ENADAS	COTAS		
DISTÂNCIA	х	γ	TERRENO	TERRENO	СОТА
	^	'	NATURAL	LIMPEZA	VERMELHA
10,30	301831,830	9581984,587	134,842	134,842	0,000
9,34	301832,463	9581983,867	134,799	133,883	-0,916
4,34	301835,760	9581980,108	134,556	133,648	-0,908
0,00	301838,625	9581976,844	134,311	133,392	-0,918
5,52	301842,265	9581972,695	134,029	133,122	-0,907
9,18	301844,680	9581969,943	133,786	132,881	-0,905
18,78	301851,008	9581962,731	133,300	132,402	-0,898
20,27	301851,997	9581961,605	133,229	132,327	-0,902
22,39	301853,395	9581960,012	133,227	132,318	-0,909
23,78	301854,306	9581958,973	133,115	132,212	-0,903
24,61	301854,858	9581958,345	133,047	133,047	0,000
•		•		•	•
70,34	301952,665	9581983,335	115,155	115,155	0,000

ESTACA 7+0.00						
	COORD	ENADAS	COTAS			
DISTÂNCIA	х	Υ	TERRENO NATURAL	TERRENO LIMPEZA	COTA VERMELHA	
65,07	301878,389	9582098,306	115,807	115,807	0,000	
59,95	301881,767	9582094,455	115,957	110,685	-5,272	
54,95	301885,065	9582090,697	116,066	110,795	-5,272	
54,08	301885,639	9582090,043	116,084	110,214	-5,870	
45,53	301891,274	9582083,621	116,269	110,404	-5,865	
44,60	301891,888	9582082,921	116,289	111,025	-5,264	
39,90	301894,992	9582079,384	116,383	111,123	-5,260	
20,07	301908,069	9582064,481	116,478	111,214	-5,264	
0,00	301921,307	9582049,395	116,035	110,766	-5,269	
4,16	301924,048	9582046,271	115,856	110,587	-5,269	
20,92	301935,105	9582033,670	115,134	109,862	-5,272	
39,98	301947,673	9582019,347	114,125	108,853	-5,272	
47,92	301952,911	9582013,378	113,702	108,435	-5,267	
52,73	301956,082	9582009,764	114,057	108,792	-5,265	
65,27	301964,359	9582000,331	113,781	108,516	-5,265	
65,97	301964,817	9581999,811	113,872	108,609	-5,263	
66,72	301965,313	9581999,245	113,906	108,642	-5,264	
70,11	301967,546	9581996,700	114,055	108,793	-5,262	
71.72	301968.611	9581995.487	114.038	108.774	-5.264	

ESTACA 8+0.00						
	COORD	ENADAS		COTAS		
DISTÂNCIA	х	Υ	TERRENO NATURAL	TERRENO LIMPEZA	COTA VERMELHA	
64,69	301893,671	9582111,213	114,381	114,381	0,000	
60,58	301896,382	9582108,124	114,915	110,272	-4,644	
55,58	301899,679	9582104,366	115,014	110,371	-4,643	
54,70	301900,264	9582103,699	115,022	109,780	-5,242	
44,78	301906,805	9582096,245	115,138	109,899	-5,239	
43,86	301907,411	9582095,554	115,151	110,512	-4,639	
0,00	301936,340	9582062,587	114,345	109,707	-4,638	
9,60	301942,671	9582055,371	113,760	109,088	-4,672	
16,71	301947,361	9582050,027	113,985	109,331	-4,654	
20,00	301949,531	9582047,553	113,795	109,157	-4,638	

113,985

9581991,740

301971,898

76,70

NOTA DE SERVIÇO TERRAPLENAGEM - LIMPEZA

risão: 00 Data: 20/12/2019

				Revisão. 00	Data. 20/12/2013
		ESTACA	1+10.00		
	COORD	ENADAS	COTAS		
DISTÂNCIA	х	Υ	TERRENO	TERRENO	СОТА
	,	•	NATURAL	LIMPEZA	VERMELHA
10,30	301831,830	9581984,587	134,842	134,842	0,000
9,34	301832,463	9581983,867	134,799	133,883	-0,916
4,34	301835,760	9581980,108	134,556	133,648	-0,908
0,00	301838,625	9581976,844	134,311	133,392	-0,918
5,52	301842,265	9581972,695	134,029	133,122	-0,907
9,18	301844,680	9581969,943	133,786	132,881	-0,905
18,78	301851,008	9581962,731	133,300	132,402	-0,898
20,27	301851,997	9581961,605	133,229	132,327	-0,902
22,39	301853,395	9581960,012	133,227	132,318	-0,909
23,78	301854,306	9581958,973	133,115	132,212	-0,903
24,61	301854,858	9581958,345	133,047	133,047	0,000
50,15	301969,420	9582024,888	113,699	109,025	-4,674
60,13	301976,002	9582017,386	111,470	106,839	-4,631
78,52	301988,126	9582003,570	108,644	104,000	-4,644
79,88	301989,027	9582002,543	108,862	104,222	-4,640
83,22	301991,226	9582000,037	108,999	104,358	-4,641
87,82	301994,263	9581996,576	109,172	109,172	0,000

ESTACA 9+0.00						
	COORD	ENADAS	COTAS			
DISTÂNCIA	х	٧	TERRENO	TERRENO	COTA	
	^	Ĭ	NATURAL	LIMPEZA	VERMELHA	
64,35	301908,928	9582124,148	113,580	113,580	0,000	
60,95	301911,170	9582121,593	113,509	110,181	-3,328	
55,95	301914,468	9582117,835	113,451	110,124	-3,327	
55,04	301915,070	9582117,149	113,443	109,516	-3,927	
44,07	301922,309	9582108,900	113,339	109,414	-3,925	
43,18	301922,894	9582108,232	113,330	110,006	-3,325	
0,00	301951,373	9582075,778	112,973	109,642	-3,331	
20,00	301964,564	9582060,745	113,179	109,846	-3,334	
42,44	301979,368	9582043,874	113,947	110,565	-3,382	
54,42	301987,269	9582034,870	107,951	104,626	-3,325	
60,18	301991,065	9582030,543	109,008	105,666	-3,342	
77,76	302002,663	9582017,327	109,792	106,447	-3,346	
81,12	302004,877	9582014,803	109,956	109,956	0,000	

	ESTACA 10+0.00						
	COORD	ENADAS	COTAS				
DISTÂNCIA	х	γ	TERRENO	TERRENO	СОТА		
	^	•	NATURAL	LIMPEZA	VERMELHA 0,000 -4,205 -4,205 -4,805 -4,805 -4,205 -4,204 -4,204 -4,192 -4,204		
66,57	301922,502	9582139,003	113,549	113,549	0,000		
62,30	301925,313	9582135,799	113,492	109,287	-4,205		
57,30	301928,611	9582132,041	113,429	109,225	-4,205		
56,39	301929,215	9582131,353	113,419	108,614	-4,805		
42,63	301938,289	9582121,011	113,260	108,455	-4,805		
41,74	301938,873	9582120,346	113,250	109,045	-4,205		
19,97	301953,237	9582103,977	113,161	108,957	-4,204		
0,00	301966,406	9582088,969	113,780	109,576	-4,204		
20,00	301979,597	9582073,936	112,990	108,798	-4,192		
40,10	301992,856	9582058,826	109,340	105,136	-4,204		
47,96	301998,039	9582052,919	108,419	104,246	-4,173		
77,77	302017,699	9582030,514	110,825	106,623	-4,202		

NOTA DE SERVIÇO TERRAPLENAGEM - LIMPEZA

visão: 00 Data: 20/12/2019

				Revisão: 00	Data: 20/12/2019
		ESTACA	1+10.00		
	COORD	ENADAS		COTAS	
DISTÂNCIA	х	γ	TERRENO	TERRENO	СОТА
	^	'	NATURAL	LIMPEZA	VERMELHA
10,30	301831,830	9581984,587	134,842	134,842	0,000
9,34	301832,463	9581983,867	134,799	133,883	-0,916
4,34	301835,760	9581980,108	134,556	133,648	-0,908
0,00	301838,625	9581976,844	134,311	133,392	-0,918
5,52	301842,265	9581972,695	134,029	133,122	-0,907
9,18	301844,680	9581969,943	133,786	132,881	-0,905
18,78	301851,008	9581962,731	133,300	132,402	-0,898
20,27	301851,997	9581961,605	133,229	132,327	-0,902
22,39	301853,395	9581960,012	133,227	132,318	-0,909
23,78	301854,306	9581958,973	133,115	132,212	-0,903
24,61	301854,858	9581958,345	133,047	133,047	0,000
	•		•		
81,99	302020,482	9582027,343	111,034	111,034	0,000

	ESTACA 11+0.00							
	COORD	ENADAS	COTAS					
DISTÂNCIA	х	γ	TERRENO	TERRENO	COTA			
	^	ľ	NATURAL	LIMPEZA	VERMELHA			
68,12	301936,509	9582153,363	113,473	113,473	0,000			
63,27	301939,708	9582149,718	113,442	108,624	-4,818			
58,27	301943,006	9582145,960	113,398	108,579	-4,819			
57,35	301943,611	9582145,270	113,386	107,967	-5,419			
41,59	301954,010	9582133,419	113,181	107,760	-5,421			
40,70	301954,592	9582132,755	113,169	108,348	-4,821			
19,97	301968,270	9582117,167	113,121	108,295	-4,826			
0,00	301981,439	9582102,160	113,940	109,108	-4,832			
20,00	301994,629	9582087,129	112,993	108,161	-4,833			
22,07	301995,995	9582085,572	111,895	107,041	-4,854			
26,41	301998,857	9582082,310	111,356	106,524	-4,832			
31,71	302002,355	9582078,324	112,380	107,547	-4,833			
35,22	302004,670	9582075,685	109,565	104,754	-4,811			
40,00	302007,821	9582072,095	108,433	103,601	-4,832			
58,19	302019,817	9582058,423	109,583	104,728	-4,855			
75,28	302031,088	9582045,579	110,062	105,220	-4,842			
80,28	302034,386	9582041,821	110,656	105,801	-4,855			
85,03	302037,522	9582038,246	110,772	110,772	0,000			

	ESTACA 12+0.00								
	COORD	ENADAS		COTAS					
DISTÂNCIA	х	Υ	TERRENO NATURAL	TERRENO LIMPEZA	COTA VERMELHA				
69,41	301950,695	9582167,520	113,353	113,353	0,000				
64,11	301954,191	9582163,536	113,329	108,052	-5,277				
59,11	301957,488	9582159,778	113,301	108,023	-5,278				
58,19	301958,092	9582159,090	113,291	107,413	-5,878				
40,79	301969,571	9582146,008	113,108	107,227	-5,881				
39,90	301970,156	9582145,342	113,100	107,819	-5,281				
20,00	301983,284	9582130,381	113,060	107,783	-5,277				
0,00	301996,472	9582115,351	113,924	108,651	-5,273				
18,30	302008,543	9582101,595	113,758	108,548	-5,210				
19,91	302009,607	9582100,383	113,295	108,024	-5,271				
28,85	302015,503	9582093,664	113,277	108,064	-5,213				
40,00	302022,858	9582085,282	109,333	104,061	-5,272				

NOTA DE SERVIÇO TERRAPLENAGEM - LIMPEZA

são: 00 Data: 20/12/201

				Revisão: 00	Data: 20/12/2019
		ESTACA	1+10.00		
	COORD	ENADAS		COTAS	
DISTÂNCIA	х	Υ	TERRENO	TERRENO	СОТА
	Α	•	NATURAL	LIMPEZA	VERMELHA
10,30	301831,830	9581984,587	134,842	134,842	0,000
9,34	301832,463	9581983,867	134,799	133,883	-0,916
4,34	301835,760	9581980,108	134,556	133,648	-0,908
0,00	301838,625	9581976,844	134,311	133,392	-0,918
5,52	301842,265	9581972,695	134,029	133,122	-0,907
9,18	301844,680	9581969,943	133,786	132,881	-0,905
18,78	301851,008	9581962,731	133,300	132,402	-0,898
20,27	301851,997	9581961,605	133,229	132,327	-0,902
22,39	301853,395	9581960,012	133,227	132,318	-0,909
23,78	301854,306	9581958,973	133,115	132,212	-0,903
24,61	301854,858	9581958,345	133,047	133,047	0,000
58,17	302034,836	9582071,631	109,146	103,973	-5,173
62,17	302037,478	9582068,620	109,265	104,093	-5,172
76,00	302046,599	9582058,226	110,163	104,930	-5,233
81,00	302049,897	9582054,467	110,433	105,184	-5,249
85,90	302053,131	9582050,781	110,311	110,311	0,000

	ESTACA 13+0.00								
	COORD	ENADAS		COTAS					
DISTÂNCIA	х	Υ	TERRENO NATURAL	TERRENO LIMPEZA	COTA VERMELHA				
65,12	301968,557	9582177,487	113,194	113,194	0,000				
61,63	301970,856	9582174,867	113,150	109,709	-3,441				
56,63	301974,153	9582171,109	113,114	109,673	-3,441				
55,72	301974,751	9582170,428	113,109	109,068	-4,041				
43,46	301982,842	9582161,207	113,047	109,010	-4,037				
42,56	301983,432	9582160,536	113,043	109,606	-3,438				
19,94	301998,354	9582143,530	113,005	109,564	-3,441				
0,00	302011,505	9582128,543	111,620	108,177	-3,443				
17,76	302023,217	9582115,195	111,420	107,972	-3,449				
20,02	302024,712	9582113,491	111,427	107,984	-3,443				
40,02	302037,900	9582098,463	110,262	106,819	-3,444				
44,97	302041,167	9582094,739	109,599	106,098	-3,501				
48,43	302043,449	9582092,139	108,789	105,213	-3,576				
60,07	302051,123	9582083,393	108,892	105,448	-3,444				
77,98	302062,936	9582069,930	109,865	106,406	-3,459				
81,55	302065,289	9582067,249	110,135	110,135	0,000				

	ESTACA 14+0.00								
	COORD	ENADAS		COTAS					
DISTÂNCIA	х	γ	TERRENO	TERRENO	COTA				
	^	•	NATURAL	LIMPEZA	VERMELHA				
68,94	301981,068	9582193,552	113,864	113,864	0,000				
64,01	301984,318	9582189,848	112,825	108,937	-3,888				
60,00	301986,966	9582186,831	112,022	108,118	-3,904				
59,01	301987,616	9582186,090	111,953	108,085	-3,868				
58,07	301988,241	9582185,378	111,886	107,454	-4,432				
40,34	301999,931	9582172,055	111,371	106,924	-4,447				
39,47	302000,506	9582171,401	111,355	107,504	-3,851				
15,96	302016,014	9582153,727	111,161	107,297	-3,864				
0,00	302026,538	9582141,734	111,615	107,712	-3,903				
2,41	302028,125	9582139,925	111,650	107,737	-3,913				

NOTA DE SERVIÇO TERRAPLENAGEM - LIMPEZA

				Revisão: 00	Data: 20/12/2019
		ESTACA	1+10.00		
	COORD	ENADAS		COTAS	
DISTÂNCIA	х	Υ	TERRENO	TERRENO	СОТА
	^	·	NATURAL	LIMPEZA	VERMELHA
10,30	301831,830	9581984,587	134,842	134,842	0,000
9,34	301832,463	9581983,867	134,799	133,883	-0,916
4,34	301835,760	9581980,108	134,556	133,648	-0,908
0,00	301838,625	9581976,844	134,311	133,392	-0,918
5,52	301842,265	9581972,695	134,029	133,122	-0,907
9,18	301844,680	9581969,943	133,786	132,881	-0,905
18,78	301851,008	9581962,731	133,300	132,402	-0,898
20,27	301851,997	9581961,605	133,229	132,327	-0,902
22,39	301853,395	9581960,012	133,227	132,318	-0,909
23,78	301854,306	9581958,973	133,115	132,212	-0,903
24,61	301854,858	9581958,345	133,047	133,047	0,000
19,91	302039,669	9582126,769	111,771	107,868	-3,903
28,46	302045,308	9582120,344	110,239	106,512	-3,727
40,10	302052,985	9582111,595	110,009	106,106	-3,903
44,84	302056,113	9582108,029	110,760	106,891	-3,869
57,56	302064,504	9582098,467	108,932	105,088	-3,844
64,79	302069,274	9582093,031	108,893	105,034	-3,859
66,12	302070,151	9582092,031	108,919	105,064	-3,855
76,29	302076,855	9582084,391	111,077	107,236	-3,841
77,37	302077,571	9582083,575	111,156	107,300	-3,856
81,47	302080,269	9582080,500	111,576	111,576	0,000

	ESTACA 15+0.00								
	COORD	ENADAS	COTAS						
DISTÂNCIA	х	Υ	TERRENO NATURAL	TERRENO LIMPEZA	COTA VERMELHA				
66,51	301997,703	9582204,918	111,856	111,856	0,000				
63,42	301999,739	9582202,598	111,605	108,771	-2,834				
59,98	302002,010	9582200,010	111,328	108,493	-2,835				
58,42	302003,037	9582198,840	111,317	108,477	-2,840				
57,51	302003,640	9582198,152	111,310	107,867	-3,444				
50,71	302008,122	9582193,044	111,185	107,726	-3,459				
41,74	302014,042	9582186,298	111,311	107,872	-3,439				
40,82	302014,650	9582185,605	111,324	108,487	-2,837				
18,94	302029,082	9582169,158	111,821	108,984	-2,837				
12,38	302033,404	9582164,232	111,286	108,451	-2,835				
0,00	302041,571	9582154,925	110,065	107,230	-2,835				
3,28	302043,734	9582152,460	109,627	106,792	-2,835				
12,82	302050,026	9582145,290	108,292	105,455	-2,837				
20,07	302054,807	9582139,842	108,884	106,049	-2,835				
33,76	302063,837	9582129,550	108,466	105,617	-2,849				
40,00	302067,952	9582124,860	108,876	106,041	-2,835				
44,97	302071,232	9582121,122	108,674	105,836	-2,838				
60,00	302081,146	9582109,824	110,316	107,481	-2,835				
72,20	302089,189	9582100,659	111,962	109,126	-2,836				
75,31	302091,243	9582098,317	112,383	112,383	0,000				

ESTACA 16+0.00								
	COORD	ENADAS		COTAS				
DISTÂNCIA	V	V	TERRENO	TERRENO	COTA			
	^	r	NATURAL	LIMPEZA	VERMELHA			
63,57	302014,674	9582215,901	111,722	111,722	0,000			

NOTA DE SERVIÇO TERRAPLENAGEM - LIMPEZA

				Revisão: 00	Data: 20/12/20
		ESTACA	1+10.00		
	COORD	ENADAS	COTAS		
DISTÂNCIA	х	Υ	TERRENO	TERRENO	СОТА
	Α	'	NATURAL	LIMPEZA	VERMELHA
10,30	301831,830	9581984,587	134,842	134,842	0,000
9,34	301832,463	9581983,867	134,799	133,883	-0,916
4,34	301835,760	9581980,108	134,556	133,648	-0,908
0,00	301838,625	9581976,844	134,311	133,392	-0,918
5,52	301842,265	9581972,695	134,029	133,122	-0,907
9,18	301844,680	9581969,943	133,786	132,881	-0,905
18,78	301851,008	9581962,731	133,300	132,402	-0,898
20,27	301851,997	9581961,605	133,229	132,327	-0,902
22,39	301853,395	9581960,012	133,227	132,318	-0,909
23,78	301854,306	9581958,973	133,115	132,212	-0,903
24,61	301854,858	9581958,345	133,047	133,047	0,000
·	•	•			•
61,62	302015,960	9582214,435	111,726	109,772	-1,954
56,62	302019,258	9582210,677	111,632	109,678	-1,954
55,67	302019,887	9582209,960	111,596	109,042	-2,554
42,79	302028,378	9582200,283	111,111	108,557	-2,554
41,94	302028,940	9582199,642	111,079	109,125	-1,954
40,12	302030,142	9582198,273	111,010	109,056	-1,954
27,35	302038,568	9582188,670	110,988	109,034	-1,954
25,64	302039,691	9582187,391	110,885	108,931	-1,954
17,27	302045,215	9582181,095	108,366	106,412	-1,954
6,34	302052,425	9582172,878	108,467	106,514	-1,953
0,00	302056,604	9582168,116	108,715	106,757	-1,958
8,68	302062,327	9582161,594	108,934	106,980	-1,954
20,01	302069,799	9582153,079	111,959	110,006	-1,953
31,32	302077,261	9582144,575	114,350	112,397	-1,953
40,01	302082,992	9582138,044	114,080	112,126	-1,954
51,17	302090,354	9582129,653	113,252	111,298	-1,954
54,04	302092,246	9582127,497	113,240	111,286	-1,954
59,93	302096,133	9582123,068	114,088	112,134	-1,954
63,50	302098,488	9582120,384	114,079	112,125	-1,954
65,36	302099,716	9582118,984	114,071	114,071	0,000

	ESTACA 17+0.00								
	COORD	ENADAS		COTAS					
DISTÂNCIA	х	Υ	TERRENO	TERRENO	СОТА				
	^	•	NATURAL	LIMPEZA	VERMELHA				
64,74	302028,937	9582229,969	109,923	109,923	0,000				
63,57	302029,707	9582229,092	109,836	108,756	-1,080				
58,57	302033,004	9582225,334	109,452	108,378	-1,074				
57,58	302033,658	9582224,589	109,392	107,718	-1,674				
43,50	302042,944	9582214,007	108,490	106,813	-1,677				
40,61	302044,855	9582211,829	108,839	107,165	-1,674				
39,59	302045,523	9582211,068	108,923	107,840	-1,083				
33,82	302049,329	9582206,730	109,133	107,921	-1,212				
20,02	302058,431	9582196,358	109,876	108,799	-1,077				
8,23	302066,206	9582187,497	111,269	110,196	-1,073				
0,00	302071,637	9582181,307	112,523	108,061	-4,462				
17,58	302083,230	9582168,096	114,309	113,235	-1,075				
56,04	302108,597	9582139,187	114,039	112,915	-1,124				
61,04	302111,894	9582135,429	114,040	112,954	-1,086				
62,08	302112,580	9582134,648	114,041	114,041	0,000				

NOTA DE SERVIÇO TERRAPLENAGEM - LIMPEZA

visão: 00 Data: 20/12/2019

	ESTACA 1+10.00								
	COORD	ENADAS		COTAS					
DISTÂNCIA	х	Υ	TERRENO NATURAL	TERRENO LIMPEZA	COTA VERMELHA				
10,30	301831,830	9581984,587	134,842	134,842	0,000				
9,34	301832,463	9581983,867	134,799	133,883	-0,916				
4,34	301835,760	9581980,108	134,556	133,648	-0,908				
0,00	301838,625	9581976,844	134,311	133,392	-0,918				
5,52	301842,265	9581972,695	134,029	133,122	-0,907				
9,18	301844,680	9581969,943	133,786	132,881	-0,905				
18,78	301851,008	9581962,731	133,300	132,402	-0,898				
20,27	301851,997	9581961,605	133,229	132,327	-0,902				
22,39	301853,395	9581960,012	133,227	132,318	-0,909				
23,78	301854,306	9581958,973	133,115	132,212	-0,903				
24,61	301854,858	9581958,345	133,047	133,047	0,000				

	ESTACA 18+0.00								
	COORD	ENADAS	COTAS						
DISTÂNCIA	х	γ	TERRENO	TERRENO	COTA				
	^	T	NATURAL	LIMPEZA	VERMELHA				
62,97	302045,138	9582241,830	109,766	109,766	0,000				
61,92	302045,832	9582241,039	109,870	108,714	-1,156				
59,65	302047,325	9582239,337	110,093	108,938	-1,155				
56,92	302049,129	9582237,281	110,644	109,481	-1,163				
56,15	302049,633	9582236,707	110,734	108,972	-1,762				
45,21	302056,849	9582228,483	111,986	110,231	-1,755				
44,13	302057,562	9582227,671	112,107	110,952	-1,155				
33,01	302064,895	9582219,314	113,208	112,053	-1,155				
14,62	302077,029	9582205,486	113,475	112,269	-1,206				
5,00	302083,372	9582198,257	113,679	110,612	-3,067				
0,00	302086,670	9582194,499	113,572	109,363	-4,208				
8,19	302092,075	9582188,339	113,784	111,263	-2,521				
18,21	302098,679	9582180,812	114,116	112,719	-1,397				
57,08	302124,317	9582151,595	113,876	112,499	-1,377				
62,08	302127,615	9582147,837	113,874	112,497	-1,377				
63,39	302128,481	9582146,849	113,871	113,871	0,000				

	ESTACA 19+0.00								
	COORD	ENADAS		COTAS					
DISTÂNCIA	х	Υ	TERRENO NATURAL	TERRENO LIMPEZA	COTA VERMELHA				
64,17	302059,376	9582255,927	113,086	113,086	0,000				
61,11	302061,398	9582253,623	113,244	110,021	-3,224				
56,11	302064,696	9582249,864	113,377	110,021	-3,357				
55,21	302065,289	9582249,188	113,393	109,421	-3,973				
44,07	302072,636	9582240,815	113,731	109,421	-4,310				
43,17	302073,229	9582240,139	113,764	110,021	-3,744				
20,00	302088,512	9582222,723	114,150	110,021	-4,130				
0,00	302101,703	9582207,690	114,119	109,315	-4,804				
20,19	302115,019	9582192,514	113,827	109,373	-4,454				
39,99	302128,080	9582177,630	113,759	111,313	-2,446				
60,37	302141,518	9582162,316	113,627	111,184	-2,443				
65,37	302144,815	9582158,558	113,630	111,195	-2,435				
67,71	302146,361	9582156,796	113,644	113,644	0,000				

ESTACA 20+0.00

NOTA DE SERVIÇO TERRAPLENAGEM - LIMPEZA

ão: 00 Data: 20/12/2019

				11011300.00	Data. 20/12/2013				
	ESTACA 1+10.00								
	COORD	ENADAS		COTAS					
DISTÂNCIA	v	v	TERRENO	TERRENO	COTA				
	Х	Υ	NATURAL	LIMPEZA	VERMELHA				
10,30	301831,830	9581984,587	134,842	134,842	0,000				
9,34	301832,463	9581983,867	134,799	133,883	-0,916				
4,34	301835,760	9581980,108	134,556	133,648	-0,908				
0,00	301838,625	9581976,844	134,311	133,392	-0,918				
5,52	301842,265	9581972,695	134,029	133,122	-0,907				
9,18	301844,680	9581969,943	133,786	132,881	-0,905				
18,78	301851,008	9581962,731	133,300	132,402	-0,898				
20,27	301851,997	9581961,605	133,229	132,327	-0,902				
22,39	301853,395	9581960,012	133,227	132,318	-0,909				
23,78	301854,306	9581958,973	133,115	132,212	-0,903				
24,61	301854,858	9581958,345	133,047	133,047	0,000				

DISTÂNCIA	COORDENADAS		COTAS		
	х	Υ	TERRENO NATURAL	TERRENO LIMPEZA	COTA VERMELHA
65,53	302073,518	9582270,134	114,265	114,265	0,000
61,26	302076,331	9582266,928	114,287	110,000	-4,287
56,25	302079,637	9582263,160	114,338	109,928	-4,410
55,33	302080,242	9582262,471	114,348	109,317	-5,031
43,71	302087,904	9582253,739	114,119	109,179	-4,940
42,83	302088,487	9582253,075	114,121	109,769	-4,352
0,00	302116,736	9582220,881	113,739	109,260	-4,480
19,39	302129,526	9582206,305	113,622	109,479	-4,143
47,12	302147,816	9582185,462	113,480	109,815	-3,665
57,27	302154,508	9582177,836	113,499	110,876	-2,623
66,09	302160,330	9582171,201	113,486	110,877	-2,609
68,59	302161,972	9582169,329	113,480	113,480	0,000

	ESTACA 21+0.00								
	COORD	ENADAS		COTAS					
DISTÂNCIA	х	γ	TERRENO	TERRENO	СОТА				
	^	Ť	NATURAL	LIMPEZA	VERMELHA				
66,06	302088,202	9582283,723	114,143	114,143	0,000				
61,63	302091,123	9582280,393	114,132	109,714	-4,419				
56,63	302094,421	9582276,635	114,025	109,676	-4,349				
55,72	302095,022	9582275,951	113,996	109,069	-4,927				
43,41	302103,137	9582266,702	113,608	108,978	-4,630				
42,52	302103,725	9582266,033	113,580	109,571	-4,009				
0,00	302131,769	9582234,072	113,430	109,208	-4,223				
19,42	302144,579	9582219,474	113,424	109,531	-3,893				
67,32	302176,171	9582183,471	113,580	110,494	-3,086				
70,28	302178,124	9582181,245	113,590	113,590	0,000				

	ESTACA 22+0.00								
	COORD	ENADAS		COTAS					
DISTÂNCIA	х	Υ	TERRENO NATURAL	TERRENO LIMPEZA	COTA VERMELHA				
64,08	302104,536	9582295,431	112,892	112,892	0,000				
61,21	302106,433	9582293,269	113,058	110,017	-3,041				
56,21	302109,731	9582289,511	113,132	109,956	-3,176				
55,29	302110,335	9582288,822	113,127	109,345	-3,782				
43,60	302118,048	9582280,033	113,061	109,097	-3,964				
42,72	302118,623	9582279,377	113,056	109,678	-3,378				

NOTA DE SERVIÇO TERRAPLENAGEM - LIMPEZA

				Revisão: 00	Data: 20/12/2019			
	ESTACA 1+10.00							
	COORD	ENADAS		COTAS				
DISTÂNCIA	х	Υ	TERRENO	TERRENO	СОТА			
	^	ı	NATURAL	LIMPEZA	VERMELHA			
10,30	301831,830	9581984,587	134,842	134,842	0,000			
9,34	301832,463	9581983,867	134,799	133,883	-0,916			
4,34	301835,760	9581980,108	134,556	133,648	-0,908			
0,00	301838,625	9581976,844	134,311	133,392	-0,918			
5,52	301842,265	9581972,695	134,029	133,122	-0,907			
9,18	301844,680	9581969,943	133,786	132,881	-0,905			
18,78	301851,008	9581962,731	133,300	132,402	-0,898			
20,27	301851,997	9581961,605	133,229	132,327	-0,902			
22,39	301853,395	9581960,012	133,227	132,318	-0,909			
23,78	301854,306	9581958,973	133,115	132,212	-0,903			
24,61	301854,858	9581958,345	133,047	133,047	0,000			
20,00	302133,613	9582262,294	112,860	109,191	-3,670			
0,00	302146,802	9582247,263	113,500	109,157	-4,343			
19,23	302159,488	9582232,807	113,376	109,365	-4,012			
67,43	302191,274	9582196,582	113,669	110,447	-3,222			
70,55	302193,332	9582194,237	113,708	113,708	0,000			

	ESTACA 23+0.00								
	COORD	ENADAS		COTAS					
DISTÂNCIA	х	γ	TERRENO	TERRENO	COTA				
		·	NATURAL	LIMPEZA	VERMELHA				
64,36	302119,383	9582308,834	112,230	112,230	0,000				
61,84	302121,048	9582306,937	112,144	109,707	-2,438				
56,84	302124,346	9582303,179	111,976	109,533	-2,443				
55,89	302124,970	9582302,468	111,963	108,902	-3,061				
42,56	302133,763	9582292,447	111,813	108,399	-3,415				
41,72	302134,317	9582291,816	111,805	108,958	-2,847				
26,50	302144,360	9582280,370	112,212	108,866	-3,346				
16,63	302150,869	9582272,953	113,150	109,450	-3,700				
0,00	302161,835	9582260,455	113,367	109,106	-4,262				
62,51	302203,064	9582213,470	113,659	110,327	-3,333				
67,51	302206,361	9582209,712	113,676	110,344	-3,332				
70,71	302208,471	9582207,307	113,688	113,688	0,000				

	ESTACA 24+0.00								
	COORD	ENADAS		COTAS					
DISTÂNCIA	х	Υ	TERRENO NATURAL	TERRENO LIMPEZA	COTA VERMELHA				
64,60	302134,262	9582322,201	111,788	111,788	0,000				
62,25	302135,814	9582320,432	111,697	109,434	-2,263				
57,25	302139,112	9582316,674	111,521	109,263	-2,258				
56,30	302139,732	9582315,967	111,491	108,636	-2,855				
42,06	302149,129	9582305,258	110,950	108,061	-2,889				
41,22	302149,681	9582304,629	110,913	108,618	-2,295				
35,52	302153,440	9582300,345	110,689	108,269	-2,420				
15,09	302166,919	9582284,985	111,023	107,886	-3,137				
0,00	302176,868	9582273,646	112,704	109,055	-3,649				
31,68	302197,765	9582249,831	113,352	110,352	-3,000				
62,03	302217,779	9582227,023	113,460	110,519	-2,941				
67,03	302221,077	9582223,265	113,533	110,605	-2,928				
69,85	302222,939	9582221,143	113,557	113,557	0,000				

NOTA DE SERVIÇO TERRAPLENAGEM - LIMPEZA

visão: 00 Data: 20/12/2019

				itevisao. 00	Data. 20/12/2013				
	ESTACA 1+10.00								
	COORD	ENADAS		COTAS					
DISTÂNCIA	х	γ	TERRENO	TERRENO	COTA				
	X	Y	NATURAL	LIMPEZA	VERMELHA				
10,30	301831,830	9581984,587	134,842	134,842	0,000				
9,34	301832,463	9581983,867	134,799	133,883	-0,916				
4,34	301835,760	9581980,108	134,556	133,648	-0,908				
0,00	301838,625	9581976,844	134,311	133,392	-0,918				
5,52	301842,265	9581972,695	134,029	133,122	-0,907				
9,18	301844,680	9581969,943	133,786	132,881	-0,905				
18,78	301851,008	9581962,731	133,300	132,402	-0,898				
20,27	301851,997	9581961,605	133,229	132,327	-0,902				
22,39	301853,395	9581960,012	133,227	132,318	-0,909				
23,78	301854,306	9581958,973	133,115	132,212	-0,903				
24,61	301854,858	9581958,345	133,047	133,047	0,000				

	ESTACA 25+0.00								
	COORD	ENADAS	COTAS						
DISTÂNCIA	х	٧	TERRENO	TERRENO	COTA				
	^	ľ	NATURAL	LIMPEZA	VERMELHA				
62,19	302150,885	9582333,581	111,018	111,018	0,000				
61,14	302151,577	9582332,792	111,046	109,969	-1,078				
56,14	302154,875	9582329,033	111,094	110,001	-1,093				
55,24	302155,464	9582328,362	111,105	109,406	-1,699				
44,03	302162,864	9582319,929	111,120	109,389	-1,731				
43,13	302163,454	9582319,257	111,117	109,985	-1,132				
19,72	302178,898	9582301,656	111,010	109,657	-1,353				
0,00	302191,901	9582286,837	111,023	109,003	-2,020				
20,00	302205,093	9582271,803	113,161	111,454	-1,707				
37,34	302216,530	9582258,770	113,220	111,560	-1,660				
59,43	302231,101	9582242,164	113,092	111,557	-1,535				
64,43	302234,399	9582238,405	113,067	111,444	-1,623				
65,98	302235,419	9582237,244	113,059	113,059	0,000				

	ESTACA 26+0.00								
	COORD	ENADAS		COTAS					
DISTÂNCIA	х	٧	TERRENO	TERRENO	СОТА				
	Α	·	NATURAL	LIMPEZA	VERMELHA				
62,98	302165,397	9582347,365	111,504	111,504	0,000				
61,34	302166,478	9582346,133	111,480	109,865	-1,615				
56,34	302169,776	9582342,375	111,483	109,868	-1,615				
55,45	302170,364	9582341,705	111,489	109,274	-2,215				
43,92	302177,966	9582333,041	111,534	109,319	-2,215				
43,03	302178,556	9582332,369	111,531	109,916	-1,615				
16,99	302195,728	9582312,799	111,221	109,606	-1,615				
6,79	302202,455	9582305,133	110,782	108,883	-1,899				
0,00	302206,934	9582300,028	112,022	109,896	-2,126				
7,74	302212,041	9582294,209	113,382	111,391	-1,991				
20,39	302220,382	9582284,703	113,272	111,407	-1,865				
47,59	302238,324	9582264,256	113,103	111,245	-1,858				
61,21	302247,307	9582254,019	112,711	110,846	-1,865				
66,21	302250,604	9582250,261	112,422	110,560	-1,862				
67,91	302251,725	9582248,984	112,336	112,336	0,000				

ESTACA	27+0.00
COORDENADAS	COTAS

NOTA DE SERVIÇO TERRAPLENAGEM - LIMPEZA

visão: 00 Data: 20/12/2019

				11011300.00	Data. 20/12/2013		
		ESTACA	1+10.00				
	COORD	ENADAS		COTAS			
DISTÂNCIA	v	v	TERRENO	TERRENO	COTA		
	Х	Υ	NATURAL	LIMPEZA	VERMELHA		
10,30	301831,830	9581984,587	134,842	134,842	0,000		
9,34	301832,463	9581983,867	134,799	133,883	-0,916		
4,34	301835,760	9581980,108	134,556	133,648	-0,908		
0,00	301838,625	9581976,844	134,311	133,392	-0,918		
5,52	301842,265	9581972,695	134,029	133,122	-0,907		
9,18	301844,680	9581969,943	133,786	132,881	-0,905		
18,78	301851,008	9581962,731	133,300	132,402	-0,898		
20,27	301851,997	9581961,605	133,229	132,327	-0,902		
22,39	301853,395	9581960,012	133,227	132,318	-0,909		
23,78	301854,306	9581958,973	133,115	132,212	-0,903		
24,61	301854,858	9581958,345	133,047	133,047	0,000		

DISTÂNCIA	х	Υ	TERRENO NATURAL	TERRENO LIMPEZA	COTA VERMELHA
63,85	302179,858	9582361,209	110,488	110,488	0,000
62,15	302180,973	9582359,937	110,839	108,797	-2,042
60,37	302182,152	9582358,595	111,210	109,167	-2,043
57,15	302184,271	9582356,179	111,367	109,324	-2,043
56,32	302184,821	9582355,552	111,411	108,768	-2,643
43,74	302193,117	9582346,099	111,836	109,209	-2,627
42,82	302193,727	9582345,403	111,853	109,826	-2,027
9,79	302215,512	9582320,577	111,319	109,266	-2,053
0,00	302221,968	9582313,219	112,911	110,795	-2,116
30,73	302242,233	9582290,125	112,342	110,283	-2,059
50,73	302255,429	9582275,086	111,563	109,484	-2,079
61,41	302262,472	9582267,059	112,829	110,765	-2,064
66,41	302265,770	9582263,301	112,893	110,822	-2,071
68,41	302267,085	9582261,802	112,906	112,906	0,000

		ESTACA	28+0.00		
	COORD	ENADAS		COTAS	
DISTÂNCIA	х	Υ	TERRENO NATURAL	TERRENO LIMPEZA	COTA VERMELHA
62,09	302196,046	9582373,083	111,970	111,970	0,000
60,35	302197,194	9582371,775	112,176	110,229	-1,947
56,21	302199,926	9582368,661	112,561	110,598	-1,963
55,35	302200,492	9582368,016	112,488	110,525	-1,963
54,32	302201,172	9582367,241	112,399	109,838	-2,561
49,80	302204,157	9582363,840	112,010	109,454	-2,556
44,17	302207,868	9582359,610	112,018	109,485	-2,533
43,27	302208,460	9582358,937	112,012	110,083	-1,929
39,99	302210,622	9582356,472	111,990	110,074	-1,916
26,20	302219,720	9582346,104	113,177	111,271	-1,906
0,00	302237,001	9582326,411	113,543	111,684	-1,859
14,38	302246,486	9582315,601	114,093	112,195	-1,898
24,21	302252,971	9582308,211	113,883	111,990	-1,893
34,64	302259,845	9582300,377	114,335	112,395	-1,940
40,00	302263,382	9582296,346	113,741	111,882	-1,859
43,95	302265,991	9582293,373	114,270	112,331	-1,939
46,12	302267,421	9582291,743	114,075	112,137	-1,939
60,09	302276,632	9582281,246	114,112	112,253	-1,859
62,70	302278,354	9582279,283	113,945	112,034	-1,911
64,41	302279,480	9582278,000	113,818	113,818	0,000

NOTA DE SERVIÇO TERRAPLENAGEM - LIMPEZA

isão: 00 Data: 20/12/2019

				11011300.00	Bata: 20/12/2019						
		ESTACA	1+10.00								
	COORD	ENADAS	COTAS								
DISTÂNCIA	v	v	TERRENO	TERRENO	COTA						
	Х	Υ	NATURAL	LIMPEZA	VERMELHA						
10,30	301831,830	9581984,587	134,842	134,842	0,000						
9,34	301832,463	9581983,867	134,799	133,883	-0,916						
4,34	301835,760	9581980,108	134,556	133,648	-0,908						
0,00	301838,625	9581976,844	134,311	133,392	-0,918						
5,52	301842,265	9581972,695	134,029	133,122	-0,907						
9,18	301844,680	9581969,943	133,786	132,881	-0,905						
18,78	301851,008	9581962,731	133,300	132,402	-0,898						
20,27	301851,997	9581961,605	133,229	132,327	-0,902						
22,39	301853,395	9581960,012	133,227	132,318	-0,909						
23,78	301854,306	9581958,973	133,115	132,212	-0,903						
24,61	301854,858	9581958,345	133,047	133,047	0,000						

	ESTACA 29+0.00														
	COORD	ENADAS		COTAS											
DISTÂNCIA	х	Υ	TERRENO NATURAL	TERRENO LIMPEZA	COTA VERMELHA										
54,04	302216,389	9582380,223	115,820	115,820	0,000										
51,98	302217,752	9582378,670	116,055	113,755	-2,300										
46,98	302221,050	9582374,912	116,622	114,332	-2,290										
46,40	302221,430	9582374,479	116,687	114,114	-2,574										
45,40	302222,089	9582373,727	116,800	114,114	-2,687										
44,40	302222,749	9582372,975	116,900	114,614	-2,287										
39,95	302225,683	9582369,632	117,132	114,812	-2,320										
20,00	302238,840	9582354,637	118,887	116,597	-2,290										
14,47	302242,487	9582350,481	119,025	116,744	-2,282										
0,00	302252,034	9582339,602	120,525	118,265	-2,260										
24,85	302268,423	9582320,924	122,464	120,203	-2,261										
36,78	302276,293	9582311,955	122,879	120,618	-2,262										
41,78	302279,591	9582308,197	122,638	120,378	-2,260										
43,85	302280,958	9582306,639	122,450	122,450	0,000										

		ESTACA	30+0.00									
	COORD	ENADAS	COTAS									
DISTÂNCIA	х	Υ	TERRENO NATURAL	TERRENO LIMPEZA	COTA VERMELHA							
38,61	302241,603	9582381,812	122,064	122,064	0,000							
36,81	302242,787	9582380,463	122,297	120,270	-2,027							
31,81	302246,084	9582376,705	122,944	120,914	-2,030							
31,10	302246,553 9582376,171		123,036	120,763	-2,273							
30,10	302247,212	9582375,419	123,165	120,763	-2,402							
29,10	302247,872	9582374,668	123,295	121,263	-2,032							
19,94	302253,918	9582367,778	124,487	122,446	-2,041							
0,00	302267,067	9582352,793	127,720	125,651	-2,069							
19,83	302280,149	9582337,885	131,712	129,644	-2,069							
21,10	302280,983	9582336,934	131,747	129,634	-2,113							
23,20	302282,367	9582335,356	131,733	131,733	0,000							

		ESTACA	30+19.93						
	COORD	ENADAS	COTAS						
DISTÂNCIA	V	v	TERRENO	TERRENO	COTA				
	^	ī	NATURAL	LIMPEZA	VERMELHA				
14,02	302272,795	9582376,478	133,244	133,244	0,000				

NOTA DE SERVIÇO TERRAPLENAGEM - LIMPEZA

isão: 00 Data: 20/12/2019

				Revisão: 00	Data: 20/12/2019		
		ESTACA	1+10.00				
	COORD	ENADAS		COTAS			
DISTÂNCIA	х	Υ	TERRENO	TERRENO	СОТА		
40.00	204024 020	0504004507	NATURAL	LIMPEZA	VERMELHA		
10,30	301831,830	9581984,587	134,842	134,842	0,000		
9,34	301832,463	9581983,867	134,799	133,883	-0,916		
4,34	301835,760	9581980,108	134,556	133,648	-0,908		
0,00	301838,625	9581976,844	134,311	133,392	-0,918		
5,52	301842,265	9581972,695	134,029	133,122	-0,907		
9,18	301844,680	9581969,943	133,786	132,881	-0,905		
18,78	301851,008	9581962,731	133,300	132,402	-0,898		
20,27	301851,997	9581961,605	133,229	132,327	-0,902		
22,39	301853,395	9581960,012	133,227	132,318	-0,909		
23,78	301854,306	9581958,973	133,115	132,212	-0,903		
24,61	301854,858	9581958,345	133,047	133,047	0,000		
11,94	302274,169	9582374,912	133,816	131,160	-2,656		
6,94	302277,467	9582371,153	135,190	132,350	-2,840		
0,00 302282,045		9582365,936	137,097	134,000	-3,097		
19,59 302294,965		9582351,212	138,496	135,515	-2,981		
20,04 302295,263		9582350,873	138,528	135,550	-2,978		
24,59	302298,263	9582347,453	136,509	133,556	-2,953		
26,63	302299,612	9582345,917	135,600	135,600	0,000		

NOTA DE SERVIÇO TERRAPLENAGEM - BARRAGEM

ALTURA COTA DIST COTA									FIVO												Dat	a: 20/12/2019
ALTURA COTA DIST COTA				MONTAN	TE					EIXO							JU	SANTE				
1-881 0.066 133.615 1.505 133.671 1.455 2.00% 301856.764 9581976.70 134.684 133.700 -0.611 2.00% 3.432 133.769 -0.611 2.00% 3.432 3.3769 -0.611 2.00% 3.432 3.3769 -0.611 2.00% 3.432 3.3769 -0.611 2.00% 3.432 3.3769 -0.611 2.00% 3.432 3.3769 -0.611 2.00% 3.432 3.3769 -0.611 2.00% -0.61	ESTACA		OFFSET			BORDA		COORI	DENADAS	COTA	COTA	COTA		BORDA	ı						OFFSET	
1-1000 0.383 13.288 2.411 13.3671 1.485 2.00% 30183.625 959197.844 13.2184 133.700 -0.611 2.00% 3.432 133.769 -0.613		ALTURA	COTA	DIST	COTA	DIST	%	Χ	Y	TERRENO	PROJETO	VERMELHA	%	DIST	COTA	DIST	COTA	DIST	DIST	COTA	ALTURA	
\$\frac{2}{2}\cdot{0.00} \$3.379 \$13.929 \$9.939 \$13.871 \$1.455 \$2.00% \$301846,142 \$9.58198.8.439 \$12.184 \$133.700 \$1.516 \$2.00% \$3.432 \$133.769 \$33.769 \$3.871 \$1.455 \$2.00% \$301881,175 \$9.58198.6.800 \$127.278 \$133.700 \$1.3700 \$3.370 \$2.00% \$3.432 \$133.769 \$3.8769 \$4.000 \$1.927 \$1.3871 \$4.55 \$2.00% \$301881,175 \$9.58198.6.800 \$127.278 \$133.700 \$8.200 \$3.432 \$133.769 \$3.8769 \$4.000 \$1.927 \$1.3871 \$4.55 \$2.00% \$301881,175 \$9.58198.6.800 \$2.00% \$3.1820 \$3.3700 \$8.200 \$3.432 \$133.769 \$4.000 \$1.927 \$1.937 \$1.875 \$2.00% \$3.0088.891 \$9.58200.822 \$12.5192 \$13.3700 \$8.200 \$3.432 \$133.769 \$4.000 \$1.9327 \$1.9744 \$3.6272 \$1.3871 \$4.55 \$2.00% \$301887.24 \$9.582016.817 \$1.21331 \$13.3700 \$1.2887 \$2.00% \$3.432 \$133.769 \$4.000 \$1.9329 \$1.3867 \$4.55 \$2.00% \$301887.24 \$9.582016.817 \$1.33700 \$1.5126 \$2.00% \$3.432 \$1.33.769 \$4.000 \$1.2221 \$1.244 \$4.000 \$1.9229 \$1.51222 \$1.2422 \$1.244 \$4.541 \$1.33730 \$1.455 \$2.00% \$301887.24 \$9.58202.3013 \$11.924 \$1.33700 \$1.5126 \$2.00% \$3.432 \$1.33.769 \$2.589 \$1.2700 \$2.58	1+8.81	0,056	133,615	1,595	133,671	1,455	2,00%	301836,764	9581975,210	134,563	133,700	-0,863				SE	M BORDA,	BERMA E	OFFSET			
2-10.00 5.817 127.864 15.997 33.671 1.455 2.00% 301835.688 981890.035 127.278 133.700 3.970 2.00% 3.432 133.769 3.452 133.769 3.452 133.761 1.455 2.00% 301866.691 9952003.226 125.192 133.700 8.088 2.00% 3.432 133.769 3.452 133.761 4.455 2.00% 301866.691 9952003.226 125.192 133.700 12.937 1.20% 3.432 133.769 3.452 133.761 4.455 2.00% 3.01876.208 9952003.226 125.192 133.700 12.937 2.00% 3.432 133.769 3.452 3.35761 4.555 2.00% 3.01887.724 995203.613 11.95.24 133.700 12.937 2.00% 3.432 133.769 3.3769 3.3671 4.555 2.00% 3.01887.724 995203.613 11.95.24 133.700 12.937 2.00% 3.432 133.769 3.3769 3.3671 4.555 2.00% 3.01887.724 995203.613 11.95.24 133.700 1.51.26 2.00% 3.432 133.769 3.3769 3.3671 4.555 2.00% 3.01887.724 995203.613 11.95.24 133.700 15.126 2.00% 3.432 133.769 3.376	1+10.00	0,383	133,288	2,411	133,671	1,455	-2,00%	301838,625	9581976,844	134,311	133,700	-0,611	2,00%	3,432	133,769					3,743	133,613	0,156
3+0.00 8.228 126,443 22.025 133,671 1.455 2.00% 301861.175 9881996.630 127.278 133,700 6.422 2.00% 3.432 133,769 3.432 133,769 4.400 13.927 11.674 3.6272 13.3671 1.455 2.00% 301868.891 9862003.226 125,192 133,700 13.370 12.867 2.00% 3.432 133,769 4.400 13.927 11.674 3.6272 13.3671 1.455 2.00% 301863.724 982016.417 121.313 133,700 12.387 2.00% 3.432 133,769 4.400 13.3671 1.455 2.00% 301863.724 982016.417 121.313 133,700 12.387 2.00% 3.432 133,769 4.325 4.33,769 4.4176	2+0.00	3,379	130,292	9,903	133,671	1,455	-2,00%	301846,142	9581983,439	132,184	133,700	1,516	2,00%	3,432	133,769					8,133	131,418	2,351
3-10.00 11.070 122.601 29.131 133.671 1.455 -2.00% 30188.891 982003.226 125.192 133.700 8.508 2.00% 3.432 133.769 133.769 2.00% 3.432 133.769 133.671 1.455 -2.00% 301876.208 982009.822 123.193 133.700 10.591 2.00% 3.432 133.769 133.679 1.455 -2.00% 301883.74 982003.013 119.524 133.700 1.528 2.00% 3.432 133.769 133.679 1.455 -2.00% 301883.74 982003.013 119.524 133.700 1.4176 2.00% 3.432 133.769 133.679 1.455 -2.00% 301881.431 982023.013 119.524 133.700 1.4176 2.00% 3.432 133.769 127.00 29.569 121.700 2	2+10.00	5,817	127,854	15,997	133,671	1,455	-2,00%	301853,658	9581990,035	129,730	133,700	3,970	2,00%	3,432	133,769					11,990	129,490	4,279
3-10.00 11,070 122,601 29,131 133,671 1.465 -2.00% 301686,891 9682003,226 125,192 133,700 1,091 2,00% 3,432 133,769 133,769 141,000 16,923 116,748 43,762 133,671 1.465 -2.00% 301683,724 9682016,417 121,313 133,700 12,387 2,00% 3,432 133,769 133,769 133,671 1,455 -2.00% 301683,724 9682016,417 121,313 133,700 12,387 2,00% 3,432 133,769 133,679 133,671 1,455 -2.00% 301683,724 9682016,417 133,700 15,126 2,00% 3,432 133,769 27,569 121,700 29,569 121,700 42,328 115,56 119,93 36,151 133,671 1,455 -2.00% 301683,724 9582023,013 119,924 133,700 15,126 2,00% 3,432 133,769 27,569 121,700 29,569 121,700 42,328 115,56 119,93 133,671 1,455 -2.00% 301683,724 9582023,000 116,830 133,700 16,076 2,00% 3,432 133,769 27,569 121,700 29,569 121,700 49,300 116,000 24,165 109,466 61,918 133,671 1,455 -2.00% 301913,790 9582042,800 116,830 133,700 16,870 2,00% 3,432 133,769 27,569 121,700 29,569 121,700 49,300 116,76 2,00% 3,432 133,769 27,569 121,700 29,569 121,700 49,300 116,76 2,00% 3,432 133,769 27,569 121,700 29,569 121,700	3+0.00	8,228	125,443	22,025	133,671	1,455	-2,00%	301861,175	9581996,630	127,278	133,700	6,422	2,00%	3,432	133,769		SEM B	ERMΔ		15,689	127,640	6,128
4+10.00 16.923 116,748 43.762 133.671 1.455 -2.00% 301883.724 9582016,417 121,313 133,700 12,387 2.00% 3.432 133,769	3+10.00	11,070	122,601	29,131	133,671	1,455	-2,00%	301868,691	9582003,226	125,192	133,700	8,508	2,00%	3,432	133,769		OLIVID			20,087	125,441	8,328
5-0.00 19.809 113,862 50.978 133,671 1,455 -2.00% 301891,241 9582023,013 119,524 133,700 14,176 2.00% 3,432 133,769 27,569 121,700 29,569 121,700 42,328 115,56 6+0.00 22,678 110,993 58,151 133,671 1,455 -2.00% 301891,757 9582025,908 1117,662 12,00% 3,432 133,769 27,569 121,700 29,569 121,700 42,328 115,56 6-0.00 22,678 110,993 58,151 133,671 1,455 -2.00% 301913,790 9582042,800 111,689 133,700 16,670 2.00% 3,432 133,769 27,569 121,700 29,569 121,700 49,000 111,670 20,588 10,766 66,67 133,671 1,455 -2,00% 301921,307 9582049,399 116,303 133,700 17,665 2,00% 3,432 133,769 27,569 121,700 29,569 121,700 29,569 121,700 29,569<	4+0.00	13,927	119,744	36,272	133,671	1,455	-2,00%	301876,208	9582009,822	123,109	133,700	10,591	2,00%	3,432	133,769					23,990	123,490	10,279
\$\frac{5}{6}\text{10}\text{0}\$ 21,222 \$112,449 \$4,511 \$13,671 \$1,455 \$2,00\% \$301898,757 \$982029,608 \$118,574 \$133,700 \$15,126 \$2,00\% \$3,432 \$133,769 \$27,569 \$121,700 \$29,569	4+10.00	16,923	116,748	43,762	133,671	1,455	-2,00%	301883,724	9582016,417	121,313	133,700	12,387	2,00%	3,432	133,769					30,746	120,111	13,657
6+0.00	5+0.00	19,809	113,862	50,978	133,671	1,455	-2,00%	301891,241	9582023,013	119,524	133,700	14,176	2,00%	3,432	133,769					37,232	116,869	16,900
6+10.00	5+10.00	21,222	112,449	54,511	133,671	1,455	-2,00%	301898,757	9582029,608	118,574	133,700	15,126	2,00%	3,432	133,769	27,569	121,700	29,569	121,700	42,328	115,321	18,448
7+0.00 25,107 108,564 64,222 133,671 1,455 -2,00% 301921,307 9582049,395 116,035 133,700 17,665 2,00% 3,432 133,769 27,569 121,700 29,569 121,700 51,214 110,68 8+0.00 28,958 107,786 66,167 133,671 1,455 -2,00% 301938,823 9582055,991 115,189 133,700 18,611 2,00% 3,432 133,769 27,569 121,700 29,569 121,700 52,569 121,700 52,569 121,700 29,569 121,700 52,569 121,700 29,569 121,700 52,569 121,700 29,569 121,700 52,569 121,700 29,569 121,700 29,569 121,700 29,569 121,700 29,569 121,700 29,569 121,700 29,569 121,700 29,569 121,700 29,569 121,700 29,569 121,700 29,569 121,700 29,569 121,700 29,569 121,700 29,569 121,700	6+0.00	22,678	110,993	58,151	133,671	1,455	-2,00%	301906,274	9582036,204	117,624	133,700	16,076	2,00%	3,432	133,769	27,569	121,700	29,569	121,700	47,417	112,776	20,993
7+10.00 25,885 107,786 66,167 13,671 1,455 -2,00% 301928,823 9582055,991 115,189 133,700 18,511 2,00% 3,432 133,769 27,569 121,700 29,569 121,700 51,706 110,6 8+0.00 28,958 104,713 73,849 133,671 1,455 -2,00% 301936,340 9582062,587 114,345 133,700 19,355 2,00% 3,432 133,769 27,569 121,700 29,569 121,700 52,158 110,40 9+0.00 27,554 106,117 70,340 133,671 1,455 -2,00% 301951,373 9582075,778 112,970 2,00% 3,432 133,769 27,569 121,700 29,569 121,700 52,689 121,700 29,569 121,700 29,569 121,700 29,569 121,700 29,569 121,700 29,569 121,700 29,569 121,700 29,569 121,700 29,569 121,700 29,569 121,700 29,569 121,700	6+10.00	24,185	109,486	61,918	133,671	1,455	-2,00%	301913,790	9582042,800	116,830	133,700	16,870	2,00%	3,432	133,769	27,569	121,700	29,569	121,700	49,300	111,835	21,934
8+0.00 28,958 104,713 73,849 133,671 1,455 -2,00% 301936,340 9582062,587 114,345 133,700 19,355 2,00% 3,432 133,769 27,569 121,700 29,569 121,700 52,158 110,48 8+0.00 28,766 104,905 73,370 133,671 1,455 -2,00% 301943,856 9582069,182 113,610 133,700 20,090 2,00% 3,432 133,769 27,569 121,700 29,569 121,700 52,158 110,49 9+0.00 27,554 106,117 70,340 133,671 1,455 -2,00% 301951,373 9582075,778 112,973 133,700 20,727 2,00% 3,432 133,769 27,569 121,700 29,569 121,700 52,780 110,00 9+10.00 27,628 106,043 70,524 133,671 1,455 -2,00% 301968,606 9582082,699 113,780 133,700 19,20 2,00% 3,432 133,769 27,569 121,700	7+0.00	25,107	108,564	64,222	133,671	1,455	-2,00%	301921,307	9582049,395	116,035	133,700	17,665	2,00%	3,432	133,769	27,569	121,700	29,569	121,700	51,214	110,878	22,891
8+10.00 28,766 104,905 73,370 133,671 1,455 -2,00% 301943,856 9582069,182 113,610 133,700 20,090 2,00% 3,432 133,769 27,569 121,700 29,669 121,700 52,780 110,0 9+0.00 27,554 106,117 70,340 133,671 1,455 -2,00% 301951,373 9582075,778 112,973 133,700 20,727 2,00% 3,432 133,769 27,569 121,700 52,780 110,0 10+0.00 27,628 106,043 70,524 133,671 1,455 -2,00% 301958,889 9582082,373 113,780 133,700 20,322 2,00% 3,432 133,769 27,569 121,700 29,569 121,700 52,689 109,60 10+10.00 28,152 105,519 71,835 133,671 1,455 -2,00% 301981,439 9582082,565 113,860 133,700 19,840 2,00% 3,432 133,769 27,569 121,700 29,569 121,700	7+10.00	25,885	107,786	66,167	133,671	1,455	-2,00%	301928,823	9582055,991	115,189	133,700	18,511	2,00%	3,432	133,769	27,569	121,700	29,569	121,700	51,706	110,632	23,137
9+0.00	8+0.00	28,958	104,713	73,849	133,671	1,455	-2,00%	301936,340	9582062,587	114,345	133,700	19,355	2,00%	3,432	133,769	27,569	121,700	29,569	121,700	52,158	110,406	23,363
9+10.00	8+10.00	28,766	104,905	73,370	133,671	1,455	-2,00%	301943,856	9582069,182	113,610	133,700	20,090	2,00%	3,432	133,769	27,569	121,700	29,569	121,700	54,170	109,400	24,369
10+0.00 27,628 106,043 70,524 133,671 1,455 2,00% 30196,406 9582088,969 113,780 133,700 19,920 2,00% 3,432 133,769 27,569 121,700 29,569 121,700 54,583 109,1 10+10.00 28,152 105,519 71,835 133,671 1,455 2,00% 30193,922 9582095,565 113,860 133,700 19,840 2,00% 3,432 133,769 27,569 121,700 29,569 121,700 55,238 108,8 11+0.00 28,572 105,099 72,885 133,671 1,455 2,00% 301981,439 9582102,160 113,940 133,700 19,760 2,00% 3,432 133,769 27,569 121,700 29,569 121,700 55,874 108,5 11+10.00 28,748 104,923 73,324 133,671 1,455 2,00% 301988,956 9582108,756 113,935 133,700 19,765 2,00% 3,432 133,769 27,569 121,700 29,569 121,700 56,412 108,2 12+0.00 28,883 104,788 73,661 133,671 1,455 2,00% 301996,472 9582115,351 113,924 133,700 19,776 2,00% 3,432 133,769 27,569 121,700 29,569 121,700 56,693 108,0 12+10.00 28,305 105,366 72,216 133,671 1,455 2,00% 302003,989 9582121,947 113,008 133,700 22,080 2,00% 3,432 133,769 27,569 121,700 29,569 121,700 55,297 108,8 13+10.00 27,659 106,012 70,603 133,671 1,455 2,00% 302011,505 9582128,543 111,620 133,700 22,080 2,00% 3,432 133,769 27,569 121,700 29,569 121,700 55,456 108,7 14+10.00 27,671 106,000 70,633 133,671 1,455 2,00% 302019,022 9582135,138 111,620 133,700 22,080 2,00% 3,432 133,769 27,569 121,700 29,569 121,700 56,936 108,0 14+10.00 26,755 106,916 68,342 133,671 1,455 2,00% 30204,055 9582148,329 110,840 133,700 22,085 2,00% 3,432 133,769 27,569 121,700 29,569 121,700 56,969 108,0 14+10.00 25,491 108,180 65,182 133,671 1,455 2,00% 30204,055 9582148,329 110,840 133,700 22,086 2,00% 3,432 133,769 27,569 121,700 29,569 121,700 56,069 108,0 15+10.00 23,077 110,594 59,148 133,671 1,455 2,00% 30204,058 9582141,731 110,065 133,700 22,086 2,00% 3,432 133,769 27,569 121,700 29,569 121,700 56,069 108,0	9+0.00	27,554	106,117	70,340	133,671	1,455	-2,00%	301951,373	9582075,778	112,973	133,700	20,727	2,00%	3,432	133,769	27,569	121,700	29,569	121,700	52,780	110,095	23,674
10+10.00 28,152 105,519 71,835 133,671 1,455 -2,00% 301973,922 9582095,565 113,860 133,700 19,840 2,00% 3,432 133,769 27,569 121,700 29,569 121,700 55,238 108,8 11+0.00 28,572 105,099 72,885 133,671 1,455 -2,00% 301981,439 9582102,160 113,940 133,700 19,760 2,00% 3,432 133,769 27,569 121,700 29,569 121,700 55,238 108,8 11+0.00 28,748 104,923 73,324 133,671 1,455 -2,00% 301988,956 9582108,756 113,935 133,700 19,765 2,00% 3,432 133,769 27,569 121,700 29,569 121,700 56,412 108,2 12+0.00 28,883 104,788 73,661 133,671 1,455 -2,00% 30203,989 9582121,947 113,008 133,700 20,692 2,00% 3,432 133,769 27,569 121,700	9+10.00	27,436	106,234	70,046	133,671	1,455	-2,00%	301958,889	9582082,373	113,378	133,700	20,322	2,00%	3,432	133,769	27,569	121,700	29,569	121,700	53,692	109,639	24,130
11+0.00 28,572 105,099 72,885 133,671 1,455 -2,00% 301981,439 9582102,160 113,940 133,700 19,760 2,00% 3,432 133,769 27,569 121,700 29,569 121,700 55,874 108,5 11+10.00 28,748 104,923 73,324 133,671 1,455 -2,00% 301988,956 9582108,756 113,935 133,700 19,765 2,00% 3,432 133,769 27,569 121,700 29,569 121,700 56,412 108,2 12+0.00 28,883 104,788 73,661 133,671 1,455 -2,00% 301996,472 9582115,351 113,924 133,700 19,776 2,00% 3,432 133,769 27,569 121,700 29,569 121,700 56,969 108,0 12+0.00 28,883 105,366 72,216 133,671 1,455 -2,00% 302003,989 9582128,943 111,000 20,692 2,00% 3,432 133,769 27,569 121,700 29,569	10+0.00	27,628	106,043	70,524	133,671	1,455	-2,00%	301966,406	9582088,969	113,780	133,700	19,920	2,00%	3,432	133,769	27,569	121,700	29,569	121,700	54,583	109,193	24,576
11+10.00 28,748 104,923 73,324 133,671 1,455 -2,00% 301988,956 9582108,756 113,935 133,700 19,765 2,00% 3,432 133,769 27,569 121,700 29,569 121,700 56,412 108,2 12+0.00 28,883 104,788 73,661 133,671 1,455 -2,00% 301996,472 9582115,351 113,924 133,700 19,776 2,00% 3,432 133,769 27,569 121,700 29,569 121,700 56,969 108,0 12+10.00 28,305 105,366 72,216 133,671 1,455 -2,00% 302003,989 9582121,947 113,008 133,700 20,692 2,00% 3,432 133,769 27,569 121,700 29,569 121,700 55,297 108,0 13+0.00 27,659 106,012 70,603 133,671 1,455 -2,00% 302011,505 9582128,543 111,620 133,700 22,080 2,00% 3,432 133,769 27,569 121,700 29,569 121,700 55,652 109,6 13+10.00 27,942	10+10.00	28,152	105,519	71,835	133,671	1,455	-2,00%	301973,922	9582095,565	113,860	133,700	19,840	2,00%	3,432	133,769	27,569	121,700	29,569	121,700	55,238	108,866	24,903
12+0.00 28,883 104,788 73,661 133,671 1,455 -2,00% 301996,472 9582115,351 113,924 133,700 19,776 2,00% 3,432 133,769 27,569 121,700 29,569 121,700 56,969 108,0 12+10.00 28,305 105,366 72,216 133,671 1,455 -2,00% 302003,989 9582121,947 113,008 133,700 20,692 2,00% 3,432 133,769 27,569 121,700 29,569 121,700 55,297 108,6 13+0.00 27,659 106,012 70,603 133,671 1,455 -2,00% 302011,505 9582128,543 111,620 133,700 22,080 2,00% 3,432 133,769 27,569 121,700 29,569 121,700 55,297 108,60 13+10.00 27,942 105,729 71,309 133,671 1,455 -2,00% 302019,022 9582135,138 111,620 133,700 22,080 2,00% 3,432 133,769 27,569 121,700 29,569 121,700 55,456 108,7 14+0.00 27,671	11+0.00	28,572	105,099	72,885	133,671	1,455	-2,00%	301981,439	9582102,160	113,940	133,700	19,760	2,00%	3,432	133,769	27,569	121,700	29,569	121,700	55,874	108,548	25,221
12+10.00 28,305 105,366 72,216 133,671 1,455 -2,00% 302003,989 9582121,947 113,008 133,700 20,692 2,00% 3,432 133,769 27,569 121,700 29,569 121,700 55,297 108,8 13+0.00 27,659 106,012 70,603 133,671 1,455 -2,00% 302011,505 9582128,543 111,620 133,700 22,080 2,00% 3,432 133,769 27,569 121,700 29,569 121,700 55,297 108,8 13+10.00 27,942 105,729 71,309 133,671 1,455 -2,00% 302019,022 9582135,138 111,620 133,700 22,080 2,00% 3,432 133,769 27,569 121,700 29,569 121,700 55,456 108,7 14+0.00 27,671 106,000 70,633 133,671 1,455 -2,00% 302045,538 9582148,329 110,840 133,700 22,860 2,00% 3,432 133,769 27,569 121,700 29,569 121,700 56,936 108,0 15+0.00 25,491	11+10.00	28,748	104,923	73,324	133,671	1,455	-2,00%	301988,956	9582108,756	113,935	133,700	19,765	2,00%	3,432	133,769	27,569	121,700	29,569	121,700	56,412	108,279	25,490
13+0.00 27,659 106,012 70,603 133,671 1,455 -2,00% 302011,505 9582128,543 111,620 133,700 22,080 2,00% 3,432 133,769 27,569 121,700 29,569 121,700 53,652 109,6 13+10.00 27,942 105,729 71,309 133,671 1,455 -2,00% 302019,022 9582135,138 111,620 133,700 22,080 2,00% 3,432 133,769 27,569 121,700 29,569 121,700 55,456 108,7 14+0.00 27,671 106,000 70,633 133,671 1,455 -2,00% 302026,538 9582141,734 111,615 133,700 22,085 2,00% 3,432 133,769 27,569 121,700 29,569 121,700 56,936 108,0 14+10.00 26,755 106,916 68,342 133,671 1,455 -2,00% 30204,055 9582148,329 110,840 133,700 22,860 2,00% 3,432 133,769 27,569 121,700 29,569 121,700 57,039 107,5 15+0.00 25,491	12+0.00	28,883	104,788	73,661	133,671	1,455	-2,00%	301996,472	9582115,351	113,924	133,700	19,776	2,00%	3,432	133,769	27,569	121,700	29,569	121,700	56,969	108,000	25,768
13+10.00 27,942 105,729 71,309 133,671 1,455 -2,00% 302019,022 9582135,138 111,620 133,700 22,080 2,00% 3,432 133,769 27,569 121,700 29,569 121,700 55,456 108,7 14+0.00 27,671 106,000 70,633 133,671 1,455 -2,00% 302026,538 9582141,734 111,615 133,700 22,085 2,00% 3,432 133,769 27,569 121,700 29,569 121,700 56,936 108,0 14+10.00 26,755 106,916 68,342 133,671 1,455 -2,00% 302034,055 9582148,329 110,840 133,700 22,860 2,00% 3,432 133,769 27,569 121,700 29,569 121,700 57,039 107,9 15+0.00 25,491 108,180 65,182 133,671 1,455 -2,00% 302041,571 9582154,925 110,065 133,700 23,635 2,00% 3,432 133,769 27,569 121,700 29,569 121,700 56,069 108,4 15+10.00 23,077	12+10.00	28,305	105,366	72,216	133,671	1,455	-2,00%	302003,989	9582121,947	113,008	133,700	20,692	2,00%	3,432	133,769	27,569	121,700	29,569	121,700	55,297	108,836	24,933
14+0.00 27,671 106,000 70,633 133,671 1,455 -2,00% 302026,538 9582141,734 111,615 133,700 22,085 2,00% 3,432 133,769 27,569 121,700 29,569 121,700 56,936 108,0 14+10.00 26,755 106,916 68,342 133,671 1,455 -2,00% 302034,055 9582148,329 110,840 133,700 22,860 2,00% 3,432 133,769 27,569 121,700 29,569 121,700 57,039 107,9 15+0.00 25,491 108,180 65,182 133,671 1,455 -2,00% 302041,571 9582154,925 110,065 133,700 23,635 2,00% 3,432 133,769 27,569 121,700 29,569 121,700 56,069 108,4 15+10.00 23,077 110,594 59,148 133,671 1,455 -2,00% 302049,088 9582161,521 109,386 133,700 24,314 2,00% 3,432 133,769 27,569 121,700 29,569 121,700 56,069 108,4 15+10.00 23,077	13+0.00	27,659	106,012	70,603	133,671	1,455	-2,00%	302011,505	9582128,543	111,620	133,700	22,080	2,00%	3,432	133,769	27,569	121,700	29,569	121,700	53,652	109,659	24,110
14+10.00 26,755 106,916 68,342 133,671 1,455 -2,00% 302034,055 9582148,329 110,840 133,700 22,860 2,00% 3,432 133,769 27,569 121,700 29,569 121,700 57,039 107,9 15+0.00 25,491 108,180 65,182 133,671 1,455 -2,00% 302041,571 9582154,925 110,065 133,700 23,635 2,00% 3,432 133,769 27,569 121,700 29,569 121,700 56,069 108,4 15+10.00 23,077 110,594 59,148 133,671 1,455 -2,00% 302049,088 9582161,521 109,386 133,700 24,314 2,00% 3,432 133,769 27,569 121,700 29,569 121,700 56,069 108,4 15+10.00 23,077 110,594 59,148 133,671 1,455 -2,00% 302049,088 9582161,521 109,386 133,700 24,314 2,00% 3,432 133,769 27,569 121,700 29,569 121,700 54,874 109,00	13+10.00	27,942	105,729	71,309	133,671	1,455	-2,00%	302019,022	9582135,138	111,620	133,700	22,080	2,00%	3,432	133,769	27,569	121,700	29,569	121,700	55,456	108,756	25,012
15+0.00 25,491 108,180 65,182 133,671 1,455 -2,00% 302041,571 9582154,925 110,065 133,700 23,635 2,00% 3,432 133,769 27,569 121,700 29,569 121,700 56,069 108,4 15+10.00 23,077 110,594 59,148 133,671 1,455 -2,00% 302049,088 9582161,521 109,386 133,700 24,314 2,00% 3,432 133,769 27,569 121,700 29,569 121,700 54,874 109,00	14+0.00	27,671	106,000	70,633	133,671	1,455	-2,00%	302026,538	9582141,734	111,615	133,700	22,085	2,00%	3,432	133,769	27,569	121,700	29,569	121,700	56,936	108,017	25,752
15+10.00 23,077 110,594 59,148 133,671 1,455 -2,00% 302049,088 9582161,521 109,386 133,700 24,314 2,00% 3,432 133,769 27,569 121,700 29,569 121,700 54,874 109,000 100,	14+10.00	26,755	106,916	68,342	133,671	1,455	-2,00%	302034,055	9582148,329	110,840	133,700	22,860	2,00%	3,432	133,769	27,569	121,700	29,569	121,700	57,039	107,965	25,804
	15+0.00	25,491	108,180	65,182	133,671	1,455	-2,00%	302041,571	9582154,925	110,065	133,700	23,635	2,00%	3,432	133,769	27,569	121,700	29,569	121,700	56,069	108,450	25,318
	15+10.00	23,077	110,594	59,148	133,671	1,455	-2,00%	302049,088	9582161,521	109,386	133,700	24,314	2,00%	3,432	133,769	27,569	121,700	29,569	121,700	54,874	109,048	24,721
16+0.00 22,027 111,644 56,523 133,671 1,455 -2,00% 302056,604 9582168,116 108,715 133,700 24,985 2,00% 3,432 133,769 27,569 121,700 29,569 121,700 53,824 109,500 100,500 10	16+0.00	22,027	111,644	56,523	133,671	1,455	-2,00%	302056,604	9582168,116	108,715	133,700	24,985	2,00%	3,432	133,769	27,569	121,700	29,569	121,700	53,824	109,573	24,196
16+10.00 21,523 112,148 55,262 133,671 1,455 -2,00% 302064,121 9582174,712 110,308 133,700 23,392 2,00% 3,432 133,769 27,569 121,700 29,569 121,700 53,896 109,50 100,00 10	16+10.00	21,523	112,148	55,262	133,671	1,455	-2,00%	302064,121	9582174,712	110,308	133,700	23,392	2,00%	3,432	133,769	27,569	121,700	29,569	121,700	53,896	109,537	24,232

NOTA DE SERVIÇO TERRAPLENAGEM - BARRAGEM

								-											Revisão: 00	Data	a: 20/12/2019
17+0.00	20,745	112,926	53,318	133,671	1,455	-2,00%	302071,637	9582181,307	112,523	133,700	21,177	2,00%	3,432	133,769	27,569	121,700	29,569	121,700	56,470	108,250	25,519
17+10.00	20,973	112,698	53,886	133,671	1,455	-2,00%	302079,154	9582187,903	113,048	133,700	20,652	2,00%	3,432	133,769	27,569	121,700	29,569	121,700	57,067	107,951	25,818
18+0.00	21,177	112,494	54,398	133,671	1,455	-2,00%	302086,670	9582194,499	113,572	133,700	20,128	2,00%	3,432	133,769	27,569	121,700	29,569	121,700	53,099	109,935	23,834
18+10.00	21,811	111,860	55,983	133,671	1,455	-2,00%	302094,187	9582201,094	113,847	133,700	19,853	2,00%	3,432	133,769	27,569	121,700	29,569	121,700	51,016	110,977	22,792
19+0.00	22,470	111,201	57,630	133,671	1,455	-2,00%	302101,703	9582207,690	114,119	133,700	19,581	2,00%	3,432	133,769	27,569	121,700	29,569	121,700	49,642	111,663	22,105
19+10.00	22,627	111,044	58,023	133,671	1,455	-2,00%	302109,220	9582214,285	113,929	133,700	19,771	2,00%	3,432	133,769	27,569	121,700	29,569	121,700	50,007	111,481	22,288
20+0.00	22,784	110,887	58,414	133,671	1,455	-2,00%	302116,736	9582220,881	113,739	133,700	19,961	2,00%	3,432	133,769	27,569	121,700	29,569	121,700	49,935	111,517	22,251
20+10.00	23,069	110,602	59,126	133,671	1,455	-2,00%	302124,253	9582227,477	113,584	133,700	20,116	2,00%	3,432	133,769	27,569	121,700	29,569	121,700	50,159	111,405	22,363
21+0.00	23,317	110,354	59,747	133,671	1,455	-2,00%	302131,769	9582234,072	113,430	133,700	20,270	2,00%	3,432	133,769	27,569	121,700	29,569	121,700	50,358	111,306	22,463
21+10.00	23,346	110,325	59,819	133,671	1,455	-2,00%	302139,286	9582240,668	113,465	133,700	20,235	2,00%	3,432	133,769	27,569	121,700	29,569	121,700	51,322	110,824	22,945
22+0.00	23,374	110,297	59,890	133,671	1,455	-2,00%	302146,802	9582247,263	113,500	133,700	20,200	2,00%	3,432	133,769	27,569	121,700	29,569	121,700	51,941	110,514	23,254
22+10.00	23,229	110,442	59,527	133,671	1,455	-2,00%	302154,319	9582253,859	113,435	133,700	20,265	2,00%	3,432	133,769	27,569	121,700	29,569	121,700	52,969	110,000	23,769
23+0.00	23,357	110,314	59,847	133,671	1,455	-2,00%	302161,835	9582260,455	113,367	133,700	20,333	2,00%	3,432	133,769	27,569	121,700	29,569	121,700	54,082	109,444	24,325
23+10.00	23,271	110,400	59,632	133,671	1,455	-2,00%	302169,352	9582267,050	113,038	133,700	20,662	2,00%	3,432	133,769	27,569	121,700	29,569	121,700	54,391	109,289	24,480
24+0.00	23,179	110,492	59,401	133,671	1,455	-2,00%	302176,868	9582273,646	112,704	133,700	20,996	2,00%	3,432	133,769	27,569	121,700	29,569	121,700	54,596	109,186	24,582
24+10.00	22,636	111,035	58,046	133,671	1,455	-2,00%	302184,385	9582280,241	111,859	133,700	21,841	2,00%	3,432	133,769	27,569	121,700	29,569	121,700	53,690	109,640	24,129
25+0.00	22,095	111,575	56,694	133,671	1,455	-2,00%	302191,901	9582286,837	111,023	133,700	22,677	2,00%	3,432	133,769	27,569	121,700	29,569	121,700	52,936	110,017	23,752
25+10.00	22,263	111,408	57,112	133,671	1,455	-2,00%	302199,418	9582293,433	111,523	133,700	22,177	2,00%	3,432	133,769	27,569	121,700	29,569	121,700	52,959	110,005	23,763
26+0.00	22,716	110,955	58,244	133,671	1,455	-2,00%	302206,934	9582300,028	112,022	133,700	21,678	2,00%	3,432	133,769	27,569	121,700	29,569	121,700	53,192	109,889	23,880
26+10.00	22,970	110,701	58,879	133,671	1,455	-2,00%	302214,451	9582306,624	112,467	133,700	21,233	2,00%	3,432	133,769	27,569	121,700	29,569	121,700	53,400	109,785	23,984
27+0.00	23,114	110,557	59,240	133,671	1,455	-2,00%	302221,968	9582313,219	112,911	133,700	20,789	2,00%	3,432	133,769	27,569	121,700	29,569	121,700	53,951	109,509	24,260
27+10.00	22,684	110,987	58,164	133,671	1,455	-2,00%	302229,484	9582319,815	112,967	133,700	20,733	2,00%	3,432	133,769	27,569	121,700	29,569	121,700	52,816	110,077	23,692
28+0.00	21,427	112,244	55,023	133,671	1,455	-2,00%	302237,001	9582326,411	113,543	133,700	20,157	2,00%	3,432	133,769	27,569	121,700	29,569	121,700	52,417	110,276	23,492
28+10.00	17,535	116,136	45,293	133,671	1,455	-2,00%	302244,517	9582333,006	117,033	133,700	16,667	2,00%	3,432	133,769	27,569	121,700	29,569	121,700	48,708	112,131	21,638
29+0.00	13,139	120,531	34,303	133,671	1,455	-2,00%	302252,034	9582339,602	120,525	133,700	13,175	2,00%	3,432	133,769	27,569	121,700	29,569	121,700	43,679	114,645	19,123
29+10.00	8,738	124,933	23,300	133,671	1,455	-2,00%	302259,550	9582346,197	124,119	133,700	9,581	2,00%	3,432	133,769	27,569	121,700	29,569	121,700	37,892	117,538	16,230
30+0.00	5,142	128,529	14,309	133,671	1,455	-2,00%	302267,067	9582352,793	127,720	133,700	5,980	2,00%	3,432	133,769					28,215	121,377	12,391
30+10.00	3,114	130,557	9,239	133,671	1,455	-2,00%	302274,583	9582359,389	132,425	133,700	1,275	2,00%	3,432	133,769		SEM E	BERMA		18,608	126,181	7,588
30+19.09		SEM	1 BORDA E	OFFSET			302282,045	9582365,936	136,703	133,700	-3,003	2,00%	3,432	133,769					6,752	132,109	1,660

NOTAS:

Cota do terreno (terreno natural)

NOTA DE SERVIÇO TERRAPLENAGEM - CUT-OFF

										Revisão: 00						Data: 20/12/2019			
		В	ORDA ESC	QUERDA			10m LA	EIX DO DIREITO DO E	O CUT-OFF IXO DA BARRA	GEM (MONTA	NTE)			BOR	DA DIREITA	A			RRAGEM RÊNCIA)
ESTACA		OFFSET			BORDA		COORI	DENADAS	COTA	COTA	COTA		BORDA			OFFSE	Г	COORE	DENADAS
	ALTURA	COTA	DIST	COTA	DIST	%	Х	Υ	TERRENO	PROJETO	VERMELHA	%	DIST	COTA	DIST	COTA	ALTURA	Х	Υ
1+7.70	-0,880	133,734	5,120	132,854	6,000	0,00%	301843,492	9581967,810	134,173	132,854	-1,319	0,000	14,000	132,854	14,328	133,183	-0,329	301836,896	9581975,327
1+10.00	-5,755	133,382	0,245	127,627	6,000	0,00%	301845,221	9581969,327	133,676	127,627	-6,049	0,000	14,000	127,627	18,775	132,402	-4,775	301838,625	9581976,844
2+0.00	-5,804	130,927	0,196	125,123	6,000	0,00%	301852,737	9581975,923	131,519	125,123	-6,396	0,000	14,000	125,123	18,649	129,772	-4,649	301846,142	9581983,439
2+10.00	-5,858	128,477	0,142	122,620	6,000	0,00%	301860,254	9581982,518	129,308	122,620	-6,688	0,000	14,000	122,620	19,052	127,672	-5,052	301853,658	9581990,035
3+0.00	-5,901	126,017	0,099	120,116	6,000	0,00%	301867,770	9581989,114	127,105	120,116	-6,989	0,000	14,000	120,116	19,438	125,554	-5,438	301861,175	9581996,630
3+10.00	-5,943	123,555	0,057	117,612	6,000	0,00%	301875,287	9581995,710	124,954	117,612	-7,342	0,000	14,000	117,612	19,416	123,028	-5,416	301868,691	9582003,226
4+0.00	-5,980	121,088	0,020	115,109	6,000	0,00%	301882,803	9582002,305	122,804	115,109	-7,695	0,000	14,000	115,109	19,389	120,498	-5,389	301876,208	9582009,822
4+10.00	-3,857	117,905	2,143	114,048	6,000	0,00%	301890,320	9582008,901	121,010	114,048	-6,962	0,000	14,000	114,048	17,584	117,632	-3,584	301883,724	9582016,417
5+0.00	-1,847	114,834	4,153	112,987	6,000	0,00%	301897,836	9582015,496	119,414	112,987	-6,427	0,000	14,000	112,987	15,792	114,779	-1,792	301891,241	9582023,013
5+10.00	-1,867	113,793	4,133	111,926	6,000	0,00%	301905,353	9582022,092	118,444	111,926	-6,518	0,000	14,000	111,926	15,659	113,585	-1,659	301898,757	9582029,608
6+0.00	-1,833	112,698	4,168	110,865	6,000	0,00%	301912,869	9582028,688	117,340	110,865	-6,475	0,000	14,000	110,865	15,510	112,375	-1,510	301906,274	9582036,204
6+10.00	-1,868	111,672	4,132	109,804	6,000	0,00%	301920,386	9582035,283	116,544	109,804	-6,740	0,000	14,000	109,804	15,466	111,270	-1,466	301913,790	9582042,800
7+0.00	-1,844	110,587	4,156	108,743	6,000	0,00%	301927,902	9582041,879	115,606	108,743	-6,863	0,000	14,000	108,743	15,365	110,108	-1,365	301921,307	9582049,395
7+10.00	-2,280	109,963	3,720	107,683	6,000	0,00%	301935,419	9582048,474	114,710	107,683	-7,028	0,000	14,000	107,683	15,666	109,349	-1,666	301928,823	9582055,991
8+0.00	-2,883	109,505	3,117	106,622	6,000	0,00%	301942,936	9582055,070	113,773	106,622	-7,151	0,000	14,000	106,622	16,710	109,331	-2,710	301936,340	9582062,587
8+10.00	-4,077	109,638	1,923	105,561	6,000	0,00%	301950,452	9582061,666	113,447	105,561	-7,886	0,000	14,000	105,561	17,985	109,546	-3,985	301943,856	9582069,182
9+0.00	-5,147	109,648	0,853	104,500	6,000	0,00%	301957,969	9582068,261	113,074	104,500	-8,574	0,000	14,000	104,500	19,339	109,839	-5,339	301951,373	9582075,778
9+10.00	-5,112	109,577	0,888	104,464	6,000	0,00%	301965,485	9582074,857	113,003	104,464	-8,539	0,000	14,000	104,464	18,834	109,298	-4,834	301958,889	9582082,373
10+0.00	-5,112	109,541	0,888	104,429	6,000	0,00%	301973,002	9582081,452	113,385	104,429	-8,956	0,000	14,000	104,429	18,430	108,859	-4,430	301966,406	9582088,969
10+10.00	-4,897	109,290	1,103	104,393	6,000	0,00%	301980,518	9582088,048	113,386	104,393	-8,993	0,000	14,000	104,393	18,156	108,549	-4,156	301973,922	9582095,565
11+0.00	-4,692	109,049	1,308	104,357	6,000	0,00%	301988,035	9582094,644	113,468	104,357	-9,111	0,000	14,000	104,357	17,903	108,260	-3,903	301981,439	9582102,160
11+10.00	-4,551	108,872	1,450	104,321	6,000	0,00%	301995,551	9582101,239	113,856	104,321	-9,535	0,000	14,000	104,321	18,104	108,426	-4,104	301988,956	9582108,756
12+0.00	-4,355	108,641	1,645	104,286	6,000	0,00%	302003,068	9582107,835	113,832	104,286	-9,547	0,000	14,000	104,286	18,262	108,548	-4,262	301996,472	9582115,351
12+10.00	-4,118	108,368	1,882	104,250	6,000	0,00%	302010,584	9582114,430	112,535	104,250	-8,285	0,000	14,000	104,250	17,793	108,043	-3,793	302003,989	9582121,947
13+0.00	-3,913	108,128	2,087	104,214	6,000	0,00%	302018,101	9582121,026	111,402	104,214	-7,188	0,000	14,000	104,214	17,757	107,972	-3,757	302011,505	9582128,543
13+10.00	-3,712	107,891	2,288	104,179	6,000	0,00%	302025,617	9582127,622	111,536	104,179	-7,358	0,000	14,000	104,179	17,756	107,934	-3,756	302019,022	9582135,138
14+0.00	-3,594	107,737	2,406	104,143	6,000	0,00%	302033,134	9582134,217	111,697	104,143	-7,554	0,000	14,000	104,143	17,709	107,852	-3,709	302026,538	9582141,734
14+10.00	-3,504	107,611	2,497	104,107	6,000	0,00%	302040,650	9582140,813	111,110	104,107	-7,003	0,000	14,000	104,107	17,235	107,342	-3,235	302034,055	9582148,329
15+0.00	-2,721	106,792	3,280	104,071	6,000	0,00%	302048,167	9582147,408	108,752	104,071	-4,681	0,000	14,000	104,071	15,616	105,687	-1,616	302041,571	9582154,925
15+10.00	-2,511	106,546	3,489	104,036	6,000	0,00%	302055,683	9582154,004	108,231	104,036	-4,195	0,000	14,000	104,036	15,667	105,703	-1,667	302049,088	9582161,521
16+0.00	-2,843	106,843	3,157	104,000	6,000	0,00%	302063,200	9582160,600	109,287	104,000	-5,287	0,000	14,000	104,000	20,006	110,006	-6,006	302056,604	9582168,116
16+10.00	-4,172	108,183	1,828	104,011	6,000	0,00%	302070,716	9582167,195	111,783	104,011	-7,772	0,000	14,000	104,011	22,754	112,765	-8,754	302064,121	9582174,712

NOTA DE SERVIÇO TERRAPLENAGEM - CUT-OFF

								.40 12.11011 22.171	02	•							Revisão: 00		Data: 20/12/2019
17+0.00	-4,478	108,500	1,522	104,022	6,000	0,00%	302078,233	9582173,791	112,696	104,022	-8.674	0,000	14,000	104,022	23,190	113,212	-9,190	302071,637	9582181,307
17+10.00	-4,928	108,960	1,072	104,033	6,000	0,00%	302075,233	9582180,386	113,254	104,033	-9,222	0,000	14,000	104,033	22,930	112,963	-8,930	302071,057	9582187,903
18+0.00	-5,448	109,492	0,552	104,033	6,000	0,00%	302003,743	9582186,982	113,836	104,044	-9,793	0,000	14,000	104,044	22,666	112,709	-8,665	302086,670	9582194,499
18+10.00	-5,420	109,474	0,580	104,055	6,000	0,00%	302100,782	9582193,578	113,838	104,055	-9,783	0,000	14,000	104,055	20,979	111,034	-6,979	302094,187	9582201,094
19+0.00	-5,248	109,313	0,752	104,055	6,000	0,00%	302108,702	9582200,173	113,918	104,066	-9,852	0,000	14,000	104,066	19,299	109,365	-5,299	302101,703	9582207,690
19+10.00	-5,220	109,296	0,781	104,000	6,000	0,00%	302115,815	9582206,779	113,785	104,076	-9,708	0,000	14,000	104,076	19,337	109,414	-5,233	302101,703	9582214.285
20+0.00	-5,182	109,269	0,818	104,070	6,000	0,00%	302123,332	9582213,364	113,679	104,087	-9,591	0,000	14,000	104,077	19,392	109,479	-5,392	302116,736	9582220,881
20+0.00	-5,162	109,243	0,855	104,007	6,000	0,00%	302130,848	9582219,960	113,553	104,007	-9,455	0,000	14,000	104,007	19,402	109,500	-5,402	302110,750	9582227,477
21+0.00	-5,111	109,221	0,889	104,109	6,000	0,00%	302138,365	9582226,556	113,417	104,109	-9,308	0,000	14,000	104,109	19,422	109,531	-5,422	302124,255	9582234,072
21+10.00	-5,082	109,202	0,918	104,100	6,000	0,00%	302145,881	9582233,151	113,385	104,120	-9,265	0,000	14,000	104,120	19,330	109,450	-5,330	302131,765	9582240,668
22+0.00	-5,002	109,177	0,954	104,120	6,000	0,00%	302153,398	9582239,747	113,434	104,120	-9,303	0,000	14,000	104,121	19,234	109,365	-5,234	302146,802	9582247,263
22+10.00	-5,011	109,153	0,989	104,142	6,000	0,00%	302160,914	9582246,342	113,455	104,142	-9,313	0,000	14,000	104,142	19,273	109,415	-5,273	302154,319	9582253,859
23+0.00	-4,972	109,125	1,028	104,153	6,000	0,00%	302168,431	9582252,938	113,362	104,153	-9,209	0,000	14,000	104,153	19,298	109,451	-5,298	302161,835	9582260,455
23+10.00	-4,937	109,100	1,064	104,164	6,000	0,00%	302175,948	9582259,534	113,071	104,164	-8.907	0,000	14,000	104,164	19,507	109,671	-5,507	302169,352	9582267,050
24+0.00	-4.925	109.099	1,075	104,175	6,000	0,00%	302183.464	9582266.129	112.930	104,175	-8,755	0,000	14,000	104,175	19,705	109.880	-5,705	302176.868	9582273.646
24+10.00	-4,888	109,073	1,112	104,186	6,000	0,00%	302190,981	9582272,725	112,109	104,186	-7,924	0,000	14,000	104,186	20,521	110,706	-6,521	302184,385	9582280,241
25+0.00	-4,939	109,135	1,061	104,197	6,000	0,00%	302198,497	9582279,321	112,090	104,197	-7,894	0,000	14,000	104,197	21,311	111,507	-7,311	302191,901	9582286,837
25+10.00	-5,030	109.637	0,971	104,607	6,000	0,00%	302206.014	9582285.916	112,857	104,607	-8,250	0,000	14,000	104,607	20,835	111,442	-6,835	302199.418	9582293.433
26+0.00	-5,059	110,077	0,941	105,018	6,000	0,00%	302213,530	9582292,512	113,369	105,018	-8,351	0,000	14,000	105,018	20,389	111,407	-6,389	302206,934	9582300,028
26+10.00	-5.092	110,521	0.908	105,429	6,000	0,00%	302221.047	9582299.107	113,089	105,429	-7.661	0.000	14,000	105,429	19,513	110.941	-5,513	302214,451	9582306.624
27+0.00	-4,953	110,793	1,047	105,839	6,000	0,00%	302228,563	9582305,703	112,841	105,839	-7,002	0,000	14,000	105,839	18,659	110,499	-4,659	302221,968	9582313,219
27+10.00	-5,025	111,275	0,975	106,250	6,000	0.00%	302236.080	9582312.299	113,260	106,250	-7,010	0,000	14,000	106,250	18,952	111.202	-4,952	302229,484	9582319,815
28+0.00	-5,070	111,731	0,930	106,661	6,000	0.00%	302243,596	9582318.894	113.950	106.661	-7.289	0,000	14,000	106.661	19,395	112.056	-5,395	302237,001	9582326.411
28+10.00	-7,857	114,929	-1,857	107,072	6,000	0.00%	302251,113	9582325,490	117,758	107,072	-10.686	0.000	14,000	107,072	23,028	116,099	-9,028	302244,517	9582333,006
29+0.00	-8,633	117,987	-2,633	109,354	6,000	0,00%	302258,629	9582332,085	121,307	109,354	-11,954	0,000	14,000	109,354	24,850	120,203	-10,850	302252,034	9582339,602
29+10.00	-8,780	121,663	-2,780	112,883	6,000	0.00%	302266,146	9582338,681	125,086	112,883	-12,204	0,000	14,000	112,883	26,032	124,914	-12,032	302259,550	9582346,197
30+0.00	-8,790	125,203	-2,790	116,412	6,000	0,00%	302273,662	9582345,277	129,729	116,412	-13,316	0,000	14,000	116,412	27,174	129,586	-13,174	302267,067	9582352,793
30+10.00	-9,359	129,301	-3,359	119,941	6,000	0,00%	302281,179	9582351,872	133,142	119,941	-13,200	0,000	14,000	119,941	24,669	130,611	-10,669	302274,583	9582359,389
30+19.93	-4,213	134,139	1,787	129,926	6,000	0,00%	302288,640	9582358,420	137,812	129,926	-7,886	0,000	14,000	129,926	19,590	135,515	-5,589	302282,045	9582365,936

NOTAS:

Distância da borda e offset estão com referência no eixo da barragem
Os nomes bordas direita e esquerda está com referência ao eixo do cut-off
As coordenadas do eixo do cut-off é apenas para se basear caso queira locar em campo
O eixo do cut-off está a 10m do lado direito (montante) com relação do eixo referência (barragem)
Cota do terreno (terreno natural)

NOTA DE SERVIÇO TERRAPLENAGEM - VERTEDOURO

												NOTA	DE SEKVIÇ	O TERRAPLENA	GEINI - VEKTEDOU	KU													I.	Revisão: 00	Dr.	ata: 20/12/2019
		BORDA ESQUERDA									EIXO					BORDA DIREITA										Revisão. 00		.td. 20/12/2013				
ESTACA		OFFSET			BERMA (2)			BEF	RMA (1)			BORDA		COORE	DENADAS	COTA	COTA	COTA		BORDA			BERI	MA (1)			BERM	MA (2)			OFFSET	
	ALTURA	COTA	DIST	COTA	DIST COT	A DIST	COTA	DIST	COTA	DIST	COTA	DIST	%	Х	Y	TERRENO	PROJETO	VERMELHA	%	DIST	COTA	DIST	COTA	DIST	COTA	DIST	COTA	DIST	COTA	DIST	COTA	ALTURA
0+0.00	-5,480	134,480	-36,370					CEME	DEDMA (4)	1	129,000	-35,000	0,00%	302587,711	9582717,267	126,584	129,000	2,416	0,000	35,000	129,000								_	35,023	129,093	-0,093
0+10.00	-7,249	136,249	-36,812					SEME	BERMA (1)		129,000	-35,000	0,00%	302579,474	9582722,937	127,587	129,000	1,413	0,000	35,000	129,000									35,310	130,242	-1,242
1+0.00	-0,835	137,915	-41,418				137,080	-41,000	137,000	-37,000	129,000	-35,000	0,00%	302571,237	9582728,607	128,589	129,000	0,411	0,000	35,000	129,000									35,614	131,457	-2,457
1+10.00	-6,780	135,780	-36,695					•	•	•	129,000	-35,000	0,00%	302563,000	9582734,277	128,582	129,000	0,418	0,000	35,000	129,000									35,863	132,454	-3,454
2+0.00	-4,762	133,763	-36,191		SEM BERMA (2	١		SEME	BERMA (1)		129,000	-35,000	0,00%	302554,763	9582739,948	128,562	129,000	0,438	0,000	35,000	129,000				SEM BER	MA (1) E (2)				35,971	132,886	-3,886
2+10.00	-4,996	133,996	-36,249		OLIN BLIMM (2	,		OLINIE	DETUNIT (1)		129,000	-35,000		302546,525	9582745,618	129,847	129,000	-0,847	0,000	35,000	129,000				OLW DEIN	**** (1) L (2)				35,937	132,748	-3,748
3+0.00	-7,605	136,605	-36,901								129,000	-35,000	0,00%	302538,288	9582751,288	131,152	129,000	-2,152	0,000	35,000	129,000									35,805	132,220	-3,220
3+10.00	-2,681	139,761	-42,341				137,080	,	. ,	-37,000	129,000	-35,000	0,00%	302530,051	9582756,958	133,236	129,000	-4,236	0,000	35,000	129,000									35,710	131,839	-2,839
4+0.00	-5,172	142,252	-43,586				137,080	,		-37,000	129,000	-35,000		302521,814	9582762,628	135,319	129,000	-6,319	0,000	35,000	129,000									36,318	134,271	-5,271
4+10.00	-7,663	144,743	-44,832				137,080	,	. ,	-37,000	129,000	-35,000	-,	302513,577	9582768,298	137,449	129,000	-8,449	0,000	35,000	129,000									36,929	136,717	-7,717
5+0.00	-2,060	147,220	-50,030		19,000 145,0			-41,000		-37,000	129,000	-35,000	0,00%	302505,323	9582773,943	139,577	129,000	-10,577	0,000	35,000	129,000	37,000	137,000	-	137,080		SEM BE	ERMA (2)		42,104	139,287	-2,207
5+10.00	-3,168	148,328	-50,584	-,	19,000 145,0	.,	,	,	. ,	-37,000	129,000	-35,000		302496,689	9582778,981	142,024	129,000	-13,024	0,000	35,000	129,000	37,000	137,000	41,000	137,080	45.000	445.000	10.000	145 400	44,228	143,536	-6,456
6+0.00 6+10.00	-4,235 -4.591	149,395 149,751	-51,118	-	19,000 145,0 19,000 145.0					-37,000 -37,000	129,000 129,000	-35,000 -35,000		302487,596 302478.134	9582783,131 9582786.354	144,286 145,924	129,000 129,000	-15,286 -16,924	0,000	35,000 35,000	129,000 129.000	37,000 37,000	137,000 137,000	41,000 41.000	137,080 137,080	45,000 45,000	145,080 145.080	49,000 49.000		49,656 51,161	146,473 149,482	-1,313 -4,322
7+0.00	-4,591 -4.967	150.127	-51,295 -51,484	-,	19,000 145,0 19,000 145.0					-37,000	129,000	-35,000	0,00%	302476,134	9582788.615	145,924	129,000	-18,044	0.000	35,000	129,000	37,000	137,000	41,000	137,080	45,000	145,080	49,000	-, -,	51,161	150.978	-4,322 -5,818
7+0.00	-5.410	150,127	-51,705		19,000 145,0		,	- /	. ,	-37,000	129,000	-35,000		302458,483	9582789.893	147,813	129,000	-18,813	0,000	35,000	129,000	37,000	137,000	41,000	137,080	45,000	145,080	49,000	,	51,909	151,141	-5,981
8+0.00	-6.125	151,285	-52,063	-,	19,000 145,0	.,	,	,	. ,	-37,000	129,000	,	.,	302448,491	9582790.175	147,613	129,000	-18,693	0.000	35,000	129,000	37,000	137,000	41,000	137,080	45,000	145,000	49,000	-,	52.063	151,141	-6.127
8+10.00	-6.742	151,902	-52,371	-,	19,000 145,0		,	-41,000	- ,	-37,000	129,000	-35,000	0,00%	302438,521	9582789,458	147,091	129,000	-18,091	0,000	35,000	129,000	37,000	137,000	41,000	137,080	45,000	145,080	49,000	-, -,	51,989	151,137	-5,977
9+0.00	-7.173	152.333	-52,586		19.000 145.0					-37.000	129,000	-35,000	0.00%	302428.673	9582787.749	146,492	129,000	-17,492	0.000	35.000	129,000	37,000	137.000	41.000	137,080	45.000	145.080	49.000		51,877	150.913	-5,753
9+10.00	-7,502	152,662	-52,751		19,000 145,0		,	,	. ,	-37,000	129,000	-35,000	-,	302418,964	9582785,355	145,414	129,000	-16,414	0,000	35,000	129,000	37,000	137,000	41,000	137,080	45,000	145,080	49,000	,	50,592	148,344	-3,184
10+0.00	-7,628	152,788	-52,814		19,000 145,0			_		-37,000	129,000	-35,000		302409,261	9582782,936	144,345	129,000	-15,345	0,000	35,000	129,000	37,000	137,000	41,000	137,080	45,000	145,080	49,000		49,143	145,446	-0,286
10+10.00	-7,692	152,852	-52,846	145,160 -4	19,000 145,0	80 -45,00	0 137,080	-41,000	137,000	-37,000	129,000	-35,000	0,00%	302399,558	9582780,517	143,475	129,000	-14,475	0,000	35,000	129,000	37,000	137,000	41,000	137,080					43,847	142,774	-5,694
11+0.00	-7,279	152,439	-52,639	145,160 -4	19,000 145,0	80 -45,00	0 137,080	-41,000	137,000	-37,000	129,000	-35,000	0,00%	302389,855	9582778,098	142,566	129,000	-13,566	0,000	35,000	129,000	37,000	137,000	41,000	137,080	1				42,463	140,005	-2,925
11+10.00	-6,546	151,706	-52,273	145,160 -4	19,000 145,0	80 -45,00	0 137,080	-41,000	137,000	-37,000	129,000	-35,000	0,00%	302380,152	9582775,679	141,773	129,000	-12,773	0,000	35,000	129,000	37,000	137,000	41,000	137,080	1				42,013	139,106	-2,026
12+0.00	-6,479	151,639	-52,239	145,160 -4	19,000 145,0	80 -45,00	0 137,080	-41,000	137,000	-37,000	129,000	-35,000	0,00%	302370,449	9582773,260	140,981	129,000	-11,981	0,000	35,000	129,000	37,000	137,000	41,000	137,080					41,506	138,092	-1,012
12+10.00	-5,847	150,608	-51,923	144,762 -4	19,000 144,6	82 -45,00	0 136,682	-41,000	136,602	-37,000	128,602	-35,000	0,00%	302360,746	9582770,840	139,745	128,602	-11,143	0,000	35,000	128,602	37,000	136,602	41,000	136,682					41,337	137,355	-0,673
13+0.00	-8,326	148,874	-57,123		19,000 140,4	.,		_		-37,000	124,388	-35,000		302351,043	9582768,421	138,508	124,388	-14,121	0,000	35,000	124,388	37,000	132,388	41,000	132,468					42,690	135,847	-3,379
13+10.00	-6,479	146,515	-52,240	.,	19,000 139,9					-37,000	123,876	-35,000		302341,340	9582766,002	136,747	123,876	-12,871	0,000	35,000	123,876	37,000	131,876	41,000	131,956					42,143	134,242	-2,286
14+0.00	-5,389	144,425	-51,695		19,000 138,9					-37,000	122,876	-35,000	0,00%	302331,637	9582763,583	134,978	122,876	-12,102	0,000	35,000	122,876	37,000	130,876	41,000	130,956					41,733	132,421	-1,465
14+10.00	-4,308	142,344	-51,154		19,000 137,9		_	_		-37,000	121,876	-35,000		302321,934	9582761,164	132,504	121,876	-10,628	0,000	35,000	121,876	37,000	129,876	41,000	129,956					41,281	130,519	-0,563
15+0.00	-2,147	139,182	-50,073	137,036 -4	19,000 136,9	-45,00	,	,	-,	-37,000	120,876	-35,000	-,	302312,231	9582758,745	130,033	120,876	-9,157	0,000	35,000	120,876									36,997	128,864	-7,988
15+10.00 16+0.00	-7,381 -4.911	135,337 131,867	-44,690 -43,456				127,956 126,956	,,,,,		-37,000 -37,000	119,876 118.876	-35,000 -35,000	0,00%	302302,528 302292,825	9582756,326 9582753.907	127,459 124,888	119,876 118,876	-7,583 -6,012	0,000	35,000 35,000	119,876 118,876		CEM DE	ERMA (1)						36,833 36,607	127,208 125,303	-7,332 -6,427
16+0.00	-4,911	128,396	-43,430				125,956	,		-37,000	117,876	-35,000	0,00%	302292,025	9582751,488	122,925	117,876	-5,012	0,000	35,000	117,876		SEWI DE	ERIVIA (1)						36,462	123,724	-5,848
17+0.00	-0,703	125,659	-42,220	+			124,956	_		-37,000	116,876	-35,000		302273,419	9582749.068	120,966	116,876	-4,090	0,000	35,000	116,876									36,520	123,724	-6,082
17+10.00	-7,015	122,891	-36,754	+			124,500	41,000	124,010	-01,000	115,876	-35,000		302263,716	9582746,649	119,514	115,876	-3,638	0,000	35,000	115,876	37,000	123,876	41,000	123,956		SEM BE	ERMA (2)		41,056	124,068	-0,112
18+0.00	-6,585	121,461	-36,646	1							114,876	-35,000	0,00%	302254,013	9582744,230	118,061	114,876	-3,185	0,000	35,000	114,876	37,000	122,876	41,000	122,956	i		(=)	l.	41,962	124,880	-1,924
18+10.00	-6,285	120,160	-36,571					OF(:-			113,876	-35,000		302244,310	9582741,811	116,255	113,876	-2,379	0,000	35,000	113,876	37,000	121,876	41,000	121,956	1			l.	42,327	124,609	-2,654
19+0.00	-6,268	119,144	-36,567					SEM E	BERMA (1)		112,876	-35,000	-,	302234,607	9582739,392	114,454	112,876	-1,578	0,000	35,000	112,876	37,000	120,876	41,000	120,956	1			l.	42,533	124,023	-3,067
19+10.00	-6,761	118,637	-36,690								111,876	-35,000	0,00%	302224,904	9582736,973	114,207	111,876	-2,331	0,000	35,000	111,876	37,000	119,876	41,000	119,956					41,973	121,902	-1,946
20+0.00	-7,658	118,534	-36,914		SEM BERMA (2)					110,876	-35,000	0,00%	302215,201	9582734,554	113,962	110,876	-3,086	0,000	35,000	110,876	37,000	118,876	41,000	118,956					41,179	119,313	-0,358
20+10.00	S	SEM OFFSET					117,947	-40,563	117,876	-37,000	109,876	-35,000	0,00%	302205,498	9582732,135	112,912	109,876	-3,037	0,000	35,000	109,876					1				36,719	116,751	-6,875
21+0.00	-0,515	117,471	-41,258				116,956	-41,000	116,876	-37,000	108,876	-35,000	0,00%	302195,795	9582729,715	111,862	108,876	-2,986	0,000	35,000	108,876								l.	36,411	114,521	-5,645
21+10.00	-0,490	116,446	-41,245				115,956	-41,000	115,876	-37,000	107,876	-35,000	0,00%	302186,092	9582727,296	111,191	107,876	-3,315	0,000	35,000	107,876								l.	36,235	112,817	-4,942
22+0.00	-7,964	115,564	-36,991								107,600	-35,000	0,00%	302176,389	9582724,877	110,521	107,600	-2,921	0,000	35,000	107,600								l.	36,314	112,858	-5,258
22+10.00	-6,634	114,234	-36,658								107,600	-35,000		302166,686	9582722,458	110,467	107,600	-2,867	0,000	35,000	107,600		SEM BE	ERMA (1)					l.	36,302	112,808	-5,208
23+0.00	-5,312	112,912	-36,328					SEM E	BERMA (1)		107,600	-35,000	.,	302156,983	9582720,039	110,413	107,600	-2,813	0,000	35,000	107,600								l.	36,274	112,694	-5,094
23+10.00	-4,288	112,428	-36,072						. ,		108,140	-35,000	0,00%	302147,280	9582717,620	109,718	108,140	-1,578	0,000	35,000	108,140								I.	36,169	112,815	-4,675
24+0.00	-3,718	111,858	-35,929								108,140	-35,000	0,00%	302137,577	9582715,201	109,013	108,140	-0,873	0,000	35,000	108,140								l.	36,197	112,928	-4,788
24+8.55	-3,892	112,031	-35,973								108,140	-35,000	0,00%	302129,277	9582713,132	108,140	108,140	0,000	0,000	35,000	108,140									36,221	113,025	-4,885

NOTAS:

5

NOTA DE SERVIÇO TERRAPLENAGEM - TOMADA D'ÁGUA

												NOTA DE S	ERVIÇO TERI	RAPLENAGE	M - TOMADA	A D'AGU	A																ENGENHANIA
																															Revisão: 00	Da	ata: 20/12/2019
				BC	ORDA ESC	UERDA							EIXO											В	ORDA DIR	EITA							
ESTACA		OFFSET			BERN	MA (1)			BORDA		COORE	ENADAS	COTA	COTA	COTA		BORDA			BER	MA (1)			BER	MA (2)			BER	MA (3)			OFFSET	
	ALTURA	COTA	DIST	COTA	DIST	COTA	DIST	COTA	DIST	%	Х	Y	TERRENO	PROJETO	VERMELHA	%	DIST	COTA	DIST	COTA	DIST	COTA	DIST	COTA	DIST	COTA	DIST	COTA	DIST	COTA	DIST	COTA	ALTURA
1+11.82	-0,509	113,793	-3,763		CEM DE	RMA (1)	•	113,284	-3,000	0,00%	302307,718	9582285,809	113,284	113,284	0,000		SEM BOR	DA		•	•			SEM BER	MA (1) (2)	0 (3)	•	•	•	•		SEM OFFSE	Ī
2+0.00	-4,147	117,431	-9,221		SEIVI DE	INIVIA (1)		113,284	-3,000	0,00%	302304,948	9582293,495	116,315	113,284	-3,031	0,000	3,000	113,284	1					SEIVI DEN	WIA (1), (2)	e (3)					6,821	115,831	-2,547
3+0.00	-2,530	121,813	-10,294	119,283	-6,500	119,283	-4,500	113,284	-3,000	0,00%	302292,271	9582308,908	126,284	113,284	-13,000	0,000	3,000	113,284	4,500	119,284	6,500	119,284	7,453	123,096	9,453	123,096		SEM BE	RMA (3)		13,490	125,787	-2,691
4+0.00	-2,951	122,234	-10,925	119,283	-6,500	119,283	-4,500	113,284	-3,000	0,00%	302279,080	9582323,941	127,053	113,284	-13,769	0,000	3,000	113,284	4,500	119,284	6,500	119,284	8,000	125,284	10,000	125,284	10,928	128,995	12,928	128,995	21,994	135,039	-6,044
5+0.00	-2,113	121,396	-9,668	119,283	-6,500	119,283	-4,500	113,284	-3,000	0,00%	302265,889	9582338,974	125,008	113,284	-11,724	0,000	3,000	113,284	4,500	119,284	6,500	119,284	8,110	125,722	10,110	125,722					24,069	135,029	-9,307
6+0.00	-0,922	120,205	-7,883	119,283	6,500	119,283	-4,500	113,284	-3,000	0,00%	302252,697	9582354,007	122,859	113,284	-9,575	0,000	3,000	113,284	4,500	119,284	6,500	119,284	7,193	122,057	9,193	122,057		SEM BE	RMA (3)		24,626	132,345	-10,288
7+0.00	-2,183	118,258	-8,972	116,075	-5,698	116,075	-3,698	113,284	-3,000	0,00%	302239,506	9582369,040	120,480	113,284	-7,196	0,000	3,000	113,284	4,500	119,284	6,500	119,284		SEM BE	ERMA (2)						13,874	124,200	-4,916
8+0.00	-3,382	116,666	-8,072					113,284	-3,000	0,00%	302226,315	9582384,073	118,404	113,284	-5,120	0,000	3,000	113,284													16,528	122,303	-9,019
8+0.61	-3,547	116,531	-8,320					112,984	-3,000	0,00%	302225,913	9582384,532	118,323	112,984	-5,339	0,000	3,000	112,984	1												17,057	122,356	-9,372
8+4.11	-3,677	116,061	-8,515					112,384	-3,000	0,00%	302223,604	9582387,162	117,856	112,384	-5,472	0,000	3,000	112,384	1												17,099	121,784	-9,400
9+0.00	-2,808	115,192	-7,212		SEM BE	RMA (1)		112,384	-3,000	0,00%	302213,124	9582399,106	116,296	112,384	-3,912	0,000	3,000	112,384	1					SEM BER	MA (1), (2)	e (3)					11,325	117,934	-5,550
9+13.75	-1,681	114,065	-5,522					112,384	-3,000	0,00%	302204,055	9582409,441	114,715	112,384	-2,331	0,000	3,000	112,384]												7,887	115,642	-3,258
10+0.00	-1,189	113,573	-4,784					112,384	-3,000	0,00%	302199,933	9582414,139	114,207	112,384	-1,823	0,000	3,000	112,384													6,964	115,026	-2,642
10+9.17	S	EM OFFSET						SI	EM BORD	4	302193,886	9582421,029	112,384	112,384	0,000	0,000	3,000	112,384	1												4,592	113,446	-1,062

NOTAS:

161

ANEXO 3: MEMÓRIA DO CÁLCULO ESTRUTURAL DO VERTEDOURO

MEMORIAL: ESTRUTURAL DO VERTEDOURO

OBRA: VERTEDOURO DA BARRAGEM FRECHEIRINHA

FORTALEZA, MARÇO DE 2020

ÍNDICE

1. INTRODUÇÃO	4
2. DADOS DO MURO DE CONTENÇÃO	5
3. PARÂMETROS DE DURABILIDADE	6
4. CARGAS ADOTADAS NOS PROJETOS	6
5. DIMENSIONAMENTO	7
Bibliografia	8

FIGURAS

Figura 1: Planta Baixa - Geral.	4
Figura 2: Vista Principal: 2-2.	4
Figura 3: Vista Laterais: 1-1 e 3-3	5
Figura 4: Exemplo de detalhamento parede/base (folha 09/19)	8

1. INTRODUÇÃO

Este memorial é parte integrante do projeto estrutural do VERTEDOURO DA BARRAGEM FRECHEIRINHA, constituído pelo CREAGER, por CONTENÇÕES LATERAIS (paredes / lajes) e por lajes dos CANAIS DE ENTRADA E RÁPIDO de concreto armado moldado no local, apoiados diretamente no solo, para o empreendimento da SECRETARIA DOS RECURSOS HÍDRICOS – SRH – DO GOVERNO DO ESTADO DO CEARÁ, localizado na cidade de Frecheirinha-CE.

Projeto Estrutural formado por 19 pranchas, contemplando desde a visão geral (vistas e planta baixa/situação), detalhes construtivos até o detalhamento das armaduras dos elementos estruturais (contenções e lajes).

PLANTA BAIXA: GERAL (projeto estrutural: folha 01/19).

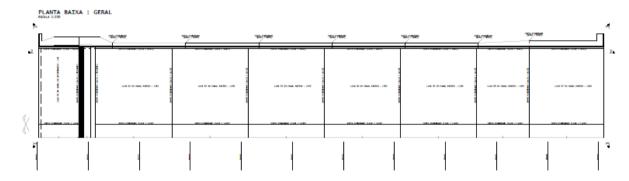


Figura 1: Planta Baixa - Geral.

VISTA 2-2: GERAL, vista frontal do muro de contenção (projeto estrutural: folha 01/19).

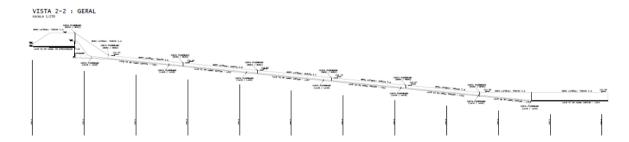


Figura 2: Vista Principal: 2-2.

VISTAS 1-1 E 3-3: vistas laterais (projeto estrutural: folha 01/19).

Figura 3: Vista Laterais: 1-1 e 3-3

2. DADOS DO MURO DE CONTENÇÃO

O muro de contenção possui em cada lateral uma extensão de aproximadamente 231,60 metros, divido em 5 trechos (subdivididos em 1.A, 2.A, 3.A, 3.B, 3.C, 3.D, 3.E, 4.A e 5.A) separados por juntas de dilatação (fugenband), com extensões e alturas variáveis, todos com lajes apoiadas diretamente sobre o solo (conforme projeto específicos com a definição da cotas altimétricas) com larguras e alturas variáveis (projeto estrutural: folhas 02/19 a 08/19).

MUROS	EXTENSÕES (m)	Hmáx (m)	Hmíx (m)
1.A	21,00	5,60	1,40
2.A	13,00	9,61	1,40
3.A	28,66	1,40	1,40
3.B	28,66	1,40	1,40
3.C	28,66	1,40	1,40
3.D	28,66	1,40	1,40
3.E	28,66	1,40	1,40
4.A	19,95	1.40	3,40
5.A	34,40	3,40	3,30

Valores em planta, ou seja, sem considerar a inclinação.

LAJES	EXTENSÕES (m)	Hmáx (m)	Hmíx (m)
LAJE 01 - LC1	15,70	0,30	0,30
LAJE 01 – LCR 1	30,00	0,50	0,30
LAJE 02 – LCR 2	30,00	0,30	0,30
LAJE 03 – LCR 2	30,00	0,30	0,30
LAJE 04 – LCR 2	30,00	0,30	0,30
LAJE 05 – LCR 2	30,00	0,30	0,30
LAJE 06 – LCR 3	20,71	0,30	0,30
LAJE 07 – LCR 4	29,40	0,30	0,30

Valores considerando a inclinação.

3. PARÂMETROS DE DURABILIDADE

Apresentam-se aqui os principais critérios e especificações adotadas no projeto, segundo a norma ABNT NBR 6118.

Agressividade do meio ambiente

Classe de agressividade ambiental: CA – III (forte)

Tipo e qualidade do concreto

Concreto Armado: classe C30 (Fck = 30 MPa)

Relação água/cimento: a/c ≤ 0.55

Propriedades dos materiais

Concreto	Aço
Fck = 30 MPa (resistência característica compressão)	Armadura passiva: CA 50 / CA 60
Eci = 30672,5 MPa (módulo de elasticidade inicial - tangente)	Es = 210 GPa

Cobrimentos

Elemento Estrutural	Cobrimento (mm)
Paredes / Lajes	50

4. CARGAS ADOTADAS NOS PROJETOS

Paredes:

a) Peso próprio: 25 kN/m³;

b) Pressão do solo: 0,33 x 20 x h kN/m², onde h é altura máxima de solo.

Onde 0,33 corresponde ao coeficiente de empuxo ativo e 20 corresponde ao peso específico do reaterro (kN/m²).

5. DIMENSIONAMENTO

Considerações gerais

No que diz respeito a coeficientes de segurança e tensões admissíveis, foram observadas todas as prescrições da NBR 6118 e da NBR 6122. O mesmo ocorreu para os detalhes das armaduras (espaçamentos, comprimentos de ancoragens, raios de curvaturas, etc.). Foram verificadas também as deformações e limites de fissuração dos elementos projetados.

Paredes e Base (conjunto)

No dimensionamento de cada conjunto parede/laje, obtiveram-se os esforços através da combinação de cargas atuantes perpendicularmente ao seu plano médio (empuxo do solo) e de carga devida ao peso próprio. Tendo-se, as mesmas, um comportamento como placa e/ou viga parede.

Utilizou-se do método simplificado para o cálculo dos esforços em cada conjunto e sua respectiva disposição da armadura.

Baseando-se no modelo simplificado dos esforços das paredes e da base, temse o detalhamento no projeto estrutural: folhas 09/19 a 19/19.

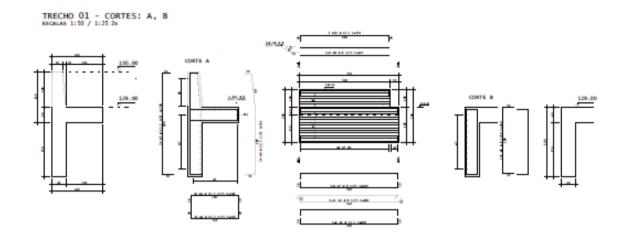



Figura 4: Exemplo de detalhamento parede/base (folha 09/19).

Bibliografia

- Araújo, J. M. (2003) *Curso de concreto armado* Rio Grande: Dunas, 2003. Volume 1, 2ª edição.
- Araújo, J. M. (2003) *Curso de concreto armado* Rio Grande: Dunas, 2003. Volume 2, 2ª edição.
- Araújo, J. M. (2003) *Curso de concreto armado* Rio Grande: Dunas, 2003. Volume 3, 2ª edição.
- Araújo, J. M. (2003) *Curso de concreto armado* Rio Grande: Dunas, 2003. Volume 4, 2ª edição.
- ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. Cargas para o cálculo de estruturas de edificações, NBR 6120, Rio de Janeiro, 1980.
- ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. Forças devidas ao vento em edificações, NBR 6123, Rio de Janeiro, 1988.
- ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. Projeto de estruturas de concreto Procedimento, NBR 6118, Rio de Janeiro, 2014.
- ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. Projeto e execuções de fundações, NBR 6122, Rio de Janeiro, 1996.
- Costa, F. O. (1997) Projetos estruturais de reservatórios paralelepipédicos de concreto armado in loco. / Flávio de Oliveira Costa. Dissertação (Mestrado) Escola de Engenharia de São Carlos Universidade de São Paulo, 1997.
- Carvalho, R. C. (2009) Cálculo e detalhamento de estruturas usuais de concreto armado: segundo a NBR 6118:2003 3ª edição São Carlos: EdUFSCar, 2009. 368p.
- Carvalho, R. C. (2009) Cálculo e detalhamento de estruturas usuais de concreto armado: volume 2. São Paulo: Pini, 2009.

- Coêlho, R. S. A. (2008) *Concreto armado na prática*. Ronaldo Sérgio de Araújo Coêlho. São Luís, Editora UEMA, 2008. 340p.
- Fusco, P. B. (1995) *Técnica de armar as estruturas de concreto*. São Paulo, Editora Pini, 1995, 1ª edição.
- Budhu, Muni (2015) [tradução e revisão técnica Luiz Antônio Vieira Carneiro, Maria Esther Soares Marques] *Fundações e estruturas de contenção*, Rio de Janeiro, LTC 1ª edição.
- Das, Braja M. (2016) [tradução Noveritis do Basil; revisão técnica Roberta Boszczowski] *Princípios de engenharia de fundações*, São Paulo, Cengage Learning adaptação da 8ª edição norte-americana.
- Gerscovich, Denise (2016) *Contenções: teoria e aplicações em obras /* Denise Gerscovish, Bernadete Ragoni Danziger, Robson Saramago, São Paulo, Oficina de Textos.
- Milititsky, Jarbas (2016) *Grandes escavações em perímetro urbano,* São Paulo, Oficina de Textos.
- Campos, João Carlos de (2015) *Elementos de fundações em concreto*, São Paulo, Oficina de Textos.

